Antivinculin Antibodies in Sera of Patients With Immune Thrombocytopenia and in Sera of Normal Subjects

By Yoshiaki Tomiyama, Riitta Kekomäki, Janice McFarland, and Thomas J. Kunicki

We have characterized a 120-Kd antigen that frequently reacts with serum antibodies from patients with immune thrombocytopenia or normal subjects. Immunoblots made after two-dimensional nonreduced/reduced sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) or two-dimensional isoelectric focusing/SDS-PAGE demonstrated that this 120-Kd protein has the same molecular weight under nonreduced or reduced conditions, is not a surface protein, and has an isoelectric point (pI) of 6.4 to 6.5. From these data, one likely candidate is the intracellular platelet protein, vinculin. Monoclonal antivinculin antibody reacts with this 120-Kd protein, and purified human platelet vinculin is bound by antibodies that recognize the 120-Kd protein. Therefore, we conclude that this 120-Kd protein is identical to vinculin. Data obtained from a sensitive enzyme-linked immunosorbent assay demonstrate the presence of naturally occurring antivinculin antibodies in many normal sera. However, the incidence of antivinculin antibodies in patient sera (67%; 55 of 82 sera) is significantly (P < .01) higher than that in normal sera (40%; 32 of 80 sera), and there is a significant difference (P < .05) between the mean levels of antivinculin antibodies in patient and normal sera. Whereas the levels of these antibodies in patient and normal sera overlap, 2 of 82 sera from patients with thrombocytopenia express unusually high levels of such antibodies. The pathologic significance of these antibodies remains to be determined.

© 1992 by The American Society of Hematology.

MATERIALS AND METHODS

Antibodies. Blood samples containing platelet antibodies were obtained from patients with clinically suspected immune thrombocytopenia, as determined by the referring physicians. All of the 141 patients selected for this study showed laboratory findings of elevated platelet-associated IgG and/or IgM by nephelometry, as well as serum antibodies reactive with platelets by enzyme-linked immunosorbent assay (ELISA). Normal sera were obtained from healthy volunteers with no history of pregnancy or blood transfusion. The murine monoclonal antibodies, AP4 (antigPIIb heavy chain), APS (anti-GPIIIa), and anti–chicken gizzard vinculin (Sigma Chemical Company, St Louis, MO) were used as specific markers of the respective proteins. ITP serum (RY) containing autoantibodies specific for both GPIIb and the 124-Kd protein was also used as a marker of these proteins.

IgG was purified from sera from two patients (PD and MOS) by affinity chromatography on Protein A–Sepharose CL-4B (Phar- macia, Piscataway, NJ). For the preparation of Fab fragments, purified IgG was dialyzed against 0.01 mol/L Na2HPO4, 0.01 mol/L NaH2PO4, and 0.15 mol/L NaCl, pH 7.4 (phosphate-buffered saline). After adding 10 mmol/L cysteine and 2 mmol/L EDTA, IgG was digested with mercuripapain (Sigma) for 2 hours at 37°C. The reaction was terminated by adding iodoacetamide (Sigma), and the Fab fragments were separated from Fc fragments and undigested IgG by chromatography on Protein A–Sepharose CL-4B. SDS-electrophoresis of the final product under nonreduced conditions showed a single band at 50 Kd by silver staining. Platelet protein preparation. Platelet-rich plasma (PRP) was obtained from normal donors or patients by differential centrifugation of blood anticoagulated with acid-citrate-dextrose (ACD, NIH

From The Blood Center of Southeastern Wisconsin; and the Departments of Anatomy/Cell Biology and Microbiology, the Medical College of Wisconsin, Milwaukee, WI.

Submitted March 18, 1991; accepted September 9, 1991.

Supported by National Heart, Lung, and Blood Institute Program Grant No. HL 44612 awarded to T.J.K and by NHLBI Grant No. HL 35307 awarded to J.M. R.K. was a Senior Visitor Scientist of the Lynne and Harry Bradley Foundation at the time of this study.

Address reprint requests to Yoshiaki Tomiyama, MD, The Blood Center of Southeastern Wisconsin, 1701 Wisconsin Ave, Milwaukee, WI 53233.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1992 by The American Society of Hematology.
Prostaglandin E₁ (PGE₁, Sigma) was added to the PRP to a final concentration of 20 ng/mL. After three washes with Ringer's citrate–dextrose (RCD) containing PGE₁, pH 6.5, the platelet pellet was resuspended in an appropriate buffer.

Washed platelets (10⁹) in 1 mL of PBS were surface labeled with ¹²⁵I using the lactoperoxidase method.²³ The surface-labeled platelets were washed three times with RCD–PGE₁ and resuspended in 0.01 mol/L Tris and 0.15 mol/L NaCl, pH 7.4 (Tris-buffered saline [TBS]) containing 5 mmol/L EDTA. To lyse the platelets, 100 µL of 10% Triton X-100 was added to the 900 µL of the platelet suspension, and the mixture was incubated for 30 minutes on ice. Phenylmethylsulfonyl fluoride (PMSF, 100 µmol/L), benzamidine (10 mmol/L), pepstatin A (0.02 µg/mL) (Sigma), and leupeptin (100 µg/mL) (Chemicon, Temecula, CA) were added just before platelet solubilization. Lysates were then centrifuged for 30 minutes at 100,000g at 4°C, and the supernatants were aliquoted and stored at −80°C.

Unlabeled platelet proteins were prepared from washed platelets (5 × 10⁹) in 900 µL of 0.01 mol/L TBS containing 5 mmol/L EDTA using the same procedure.

Electrophoresis. One-dimensional SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed by the method of Laemmli²⁴ using 7% polyacrylamide resolving slab gels. A 1:5 dilution of platelet lysate in TBS was mixed with an equal volume of SDS-PAGE sample buffer (0.19 mol/L Tris, pH 6.8, 4% SDS, 50% glycerol, and 0.002% bromphenol blue) and heated at 100°C for 5 minutes. Fifty microliters of this protein preparation were loaded in each first dimension tube gel.

Two-dimensional nonreduced/reduced SDS-PAGE was performed as previously described.²³ The first dimension (nonreduced) tube gels were composed of a 3% acrylamide stacking gel and a 5% acrylamide resolving gel. The second dimension (reduced) slab gels were composed of a 3% acrylamide stacking gel and a 7% acrylamide resolving gel. A 1:5 dilution of platelet lysate in TBS was boiled with SDS-PAGE sample buffer, and 200 µL of this mixture were loaded in each first dimension tube gel. Molecular weight standards (Bio-Rad Laboratories, Richmond, CA) were simultaneously electrophoresed in the second dimension gels.

Two-dimensional isoelectric focusing/SDS-PAGE was performed using a modification of the method of O'Farrell.²⁵ To the platelet lysate were added 2% SDS and 5% 2-mercaptoethanol (2-ME) (final concentrations), and the mixture was heated at 100°C for 5 minutes. To 30 µL of this protein preparation was added 60 µL of sample buffer, i.e., 8 mol/L urea, 4% Triton X-100, 5% 2-ME, 4% Ampholines (LK8, Pharmacia LKB Biotechnology Inc, Piscataway, NJ; a mixture of 3 vol Ampholines, isoelectric point (pI) range 4 to 6.5, and 2 vol Ampholines, pI range 5 to 8), and the mixture was loaded in each first dimension tube gel. Separation in the first dimension was achieved by focusing in the presence of 9.5 mol/L urea and 5% Ampholines at 400 V for 12 hours then 600 V for 1 hour in a 4% acrylamide tube gel. The second dimension slab gels were composed of a 3% acrylamide stacking gel and a 7% acrylamide resolving gel. Molecular weight standards were the same as those used in nonreduced/reduced SDS-PAGE.

Proteins in electrophoresis gels were detected by staining with Coomassie Blue R (CBR). Immunoblot assay. The immunoblot assay was performed as previously described.²⁶ Platelet proteins separated by electrophoresis were transferred electrophoretically to nitrocellulose membranes in 25 mmol/L phosphate buffer (pH 6.5) using a 500 mA current for 4 hours. The nitrocellulose membranes were subsequently incubated with PBS containing 0.05% Tween 20 (PBS-Tween) and 1% bovine serum albumin (BSA). Primary antisera were used at a 1:100 dilution in PBS-Tween containing 0.5% fetal calf serum. The strips were incubated with the primary antibody overnight at ambient temperature, washed three times for 10 minutes in PBS-Tween, and incubated with a 1:1,000 dilution of alkaline phosphatase (AP)-conjugated goat anti-human IgG or anti-mouse IgG (Zymed Laboratories Inc, South San Francisco, CA). After 2 hours, the strips were washed three times and then incubated with a freshly prepared substrate solution (0.33 mg/mL nitro blue tetrazolium [NBT]; 0.17 mg/mL 5-bromo-4-chloro-3-indolyl phosphate [BCIP]; 0.1 mol/L Tris-HCl; 0.1 mol/L NaCl; and 0.005 mol/L MgCl₂, pH 9.5). When Fab fragments of IgG were used as a primary antibody, AP-conjugated goat anti-human IgG, F(ab')₂ specific (Jackson ImmunoResearch, West Grove, PA) was used as a secondary antibody.

In selected experiments, labeled platelet proteins were mixed with unlabeled proteins and used as a source of antigen in the immunoblot assay. After color development, the membranes were dried and exposed to Kodak XAR-5 film (Eastman Kodak, Rochester, NY) at −80°C to localize radiolabeled, surface membrane GPs.

Direct antigen ELISA. Purified human platelet vinculin was kindly provided by Dr K. Burridge (University of North Carolina, Chapel Hill, NC).²⁷ Fifty microliters of purified human platelet vinculin (2 µg/mL) or BSA (5 µg/mL) in 15 mmol/L Na₂CO₃, 35 mmol/mL NaHCO₃, 0.02% NaN₃, pH 9.6 (carbonate buffer) were added to each well of 96-well microtiter plate (Immulon II; Dynatech Laboratories Inc, Chantilly, VA), and the trays were incubated overnight at 4°C. After three washes, the wells were blocked by filling each with PBS-Tween containing 2% BSA and incubating the plates for 1 hour at ambient temperature. After three additional washes, 50 µL of diluted antisera (usually a 1:20 dilution) were added to each well. After incubation at ambient temperature for 1 hour, the wells were washed six times with PBS-Tween, and 50 µL of the secondary antibody (1:1,000 dilution of AP-conjugated goat anti-human IgG or anti-mouse IgG) were added to each well. Trays were then incubated for 1 hour at ambient temperature. The wells were washed six times, 50 µL of the substrate (p-nitrophenylphosphate in diethanolamine buffer, pH 9.8) were added to each well, and absorbance at 405 nm was recorded. To ascertain specific binding to vinculin, the absorbance represented by nonspecific binding to BSA was subtracted from the absorbance obtained using vinculin.

Anti-DNA antibodies. Anti-dsDNA and anti-ssDNA antibodies were measured using an anti-dsDNA kit assay (Amersham Corp, Arlington Heights, IL).

RESULTS
Antibodies reactive with a 120-Kd antigen. Using an immunoblot assay, we identified platelet proteins that are bound by antiplatelet antibodies in immune thrombocytopenia (Fig 1). The positions of GPIIb and GPIIIa are established by the binding of a mixture of AP4 and AP5 (lane 1). Aside from the platelet-associated IgG band detected by secondary goat anti-human IgG,²⁸ sera RY²⁰ (lane 3) and RA²¹ (lane 2) contain autoantibodies specific for GPIIb and GPIIIa, respectively. However, one of the most frequently detected antigens in this assay has been an unidentified protein having an apparent molecular weight of 120 Kd. Although a faint band at a molecular weight of 120 Kd was detected by many patient sera tested, it was obvious that with 15 of the 141 sera tested, a strong band was detected at this position. Since PD serum (lane 4) and MOS serum (lane 5) contain high levels of this antibody,
Fig 1. Binding of serum antibodies to platelet proteins. Solubilized platelet proteins were separated on 7% SDS-polyacrylamide gel under nonreduced conditions and transferred to a nitrocellulose membrane. The following antibodies were tested: a mixture of murine monoclonal antibodies AP4 (anti-GPllb heavy chain) and AP5 (anti-GPllla) (lane 1); RA autoantiserum (lane 2); RY autoantiserum (lane 3); PD autoantiserum recognizing the 120-Kd antigen (lane 4); MOS, a second antiserum recognizing the 120-Kd antigen (lane 5); normal serum 1 recognizing the 120-Kd antigen (lane 6); normal serum that does not recognize the 120-Kd antigen (lane 7). The positions of platelet-associated IgG, GPllb, GPllla, and the 120-Kd antigen are indicated.

Fig 2. Characterization of the 120-Kd antigen recognized by PD antiserum by two-dimensional nonreduced/reduced SDS-PAGE. 125I-labeled platelet proteins were mixed with equal amount of unlabeled platelet proteins and separated by two-dimensional nonreduced/reduced SDS-PAGE and transferred to a nitrocellulose membrane. Immunoblots using PD serum show that the 120-Kd protein has the same electrophoretic mobility under nonreduced or reduced conditions (Fig 2). Autoradiograms of the same nitrocellulose membranes permit one to determine the positions of surface GPs, including GPIa, GPIIa, PECAM-1, GPIc, GPIIb/IIIa, and GPIV (Fig 2A). The 120-Kd protein is not radiolabeled with 125I by Chloramine T method and does not comigrate with any of these surface glycoproteins (Figs 2A and B). In additional experiments (not shown), we determined that the 120-Kd...
protein is also not labeled with \(^{3}H\) using the periodate oxidation method.

Immunoblots after two-dimensional isoelectric focusing/SDS-PAGE demonstrate that the 120-Kd protein has a \(pI\) of 6.4 to 6.5 (Fig 3C, indicated by letter a). The immunoblots also show that four other protein components are bound by antibodies in PD serum, that is, a 140-Kd component having a \(pI\) of 6.1 to 6.2 (indicated by letter b), a 110-Kd component having a \(pI\) of 5.9 to 6.0 (indicated by letter c), a 105-Kd component having a \(pI\) of 5.8 to 5.9 (indicated by letter d), and an 80-Kd component having a \(pI\) of 6.1 to 6.4 (indicated by letter e). Interestingly, the 80-Kd component is preferentially detected in two-dimensional isoelectric focusing/SDS-PAGE (compare Fig 2B with Fig 3C), and both this component and the 120-Kd protein have a unique saucer shape, which suggests the existence of several isoelectrophoretic forms of either protein. The electrophoretic behavior of the 120-Kd protein in this two-dimensional electrophoresis protocol is reminiscent of that of the intracellular platelet protein, vinculin. A murine monoclonal antivinculin antibody reacts with exactly the same five components that were detected by PD serum (Figs 3B and C). In the CBR-stained gel (Fig 3A), three of these five components are visible (the 120-Kd, 110-Kd, and 80-Kd components). Normal serum 1 reacts with only these three components (Fig 3D). The two normally less prominent components (b and d) are probably not detected by normal serum 1 because of its comparatively lower antibody titer. None of these five components are detected with those normal sera that do not contain antibody specific for the 120-Kd protein (data not shown). These data demonstrate that the 120-Kd protein is probably vinculin, and the binding of antivinculin antibody to components other than the 120-Kd protein appears to be specific.

Identification of the 120-Kd protein as vinculin. To confirm that the 120-Kd protein is vinculin, purified human platelet vinculin was used as a source of antigen in an immunoblot assay (Fig 4). SDS gels stained with CBR (Fig 4A, lane 2) show the position of the purified human platelet vinculin, and corresponding immunoblots (Fig 4B) demonstrate that purified human platelet vinculin binds PD (lane 2), MOS (lane 3), and normal serum 1 (lane 4), as well as monoclonal antivinculin antibody (lane 1). Furthermore, we examined whether the 120-Kd antigen in SLE reported by Jouhikainen et al.⁹ is identical to vinculin. Purified human platelet vinculin is also bound by antibody in one prototype serum from that study (data not shown). These data demonstrate that the 120-Kd protein antigen is identical to human platelet vinculin, and that this protein is identical to the previously reported 124-Kd antigen in ITP¹⁰ and the 120-Kd antigen in SLE reported by Jouhikainen et al.⁹

To demonstrate that the binding of IgG to vinculin is immunologically specific, purified human vinculin was incubated with purified IgG (100 \(\mu\)g/mL) or Fab fragments (100 \(\mu\)g/mL) in the immunoblot assay. IgG and Fab fragments were prepared from PD and MOS sera. After washing three times, all strips were incubated with AP-conjugated goat anti-human IgG, F(ab')₂ specific antibody for 2 hours. Figure 5 shows that the reactivity of purified IgG (100 \(\mu\)g/mL) is essentially the same as that of a 1:100 dilution of antisera, and that Fab fragments also react with purified vinculin. Fab fragments produced a strong band; however, it is weaker than that produced by purified IgG.

Direct antigen ELISA using intact vinculin. Because it is difficult in the immunoblot assay to evaluate a weak positive reaction of serum antibody with vinculin, a direct antigen ELISA was used to examine more carefully the frequency of antivinculin antibodies in patients and normal individuals. Eighty-two patient sera and 80 normal sera were reexamined (Fig 6). The mean absorbance value obtained using 11 normal sera that did not react with vinculin in the immunoblot assay was .019 ± .021 (mean ± SD), and an absorbance value of greater than .082 was arbitrarily considered positive (> 3 SD above control mean). Fifty-five of 82 patient sera (67%) and 32 of 80 normal sera (40%)
Titers of PD and MOS in the antigen ELISA are 1:10,240 and 1:1,280, respectively. These titers are 64-fold and eightfold higher than that given by any normal serum (Fig 7). However, the titer of RY (1:160) is essentially the same as that of the strongest normal sera.

Clinical analysis of patients with suspected immune thrombocytopenia. As shown in Table 1, in 34 of 82 patients whose sera were examined by ELISA as described, clinical
Table 1. Clinical Analysis of Patients With Suspected Immune Thrombocytopenia

<table>
<thead>
<tr>
<th>Patient sera examined</th>
<th>Total Positive</th>
<th>Negative</th>
<th>Positive %</th>
</tr>
</thead>
<tbody>
<tr>
<td>by ELISA</td>
<td>82</td>
<td>55*</td>
<td>27</td>
</tr>
<tr>
<td>With clinical follow-up</td>
<td>34</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Primary ITP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>19</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Acute</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Secondary ITP</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Nonimmune TP</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Normal sera</td>
<td>80</td>
<td>32</td>
<td>48</td>
</tr>
</tbody>
</table>

*An absorbance value of >0.82 in ELISA is arbitrarily considered positive.

None of these sera were found to contain antibodies against dsDNA or ssDNA.

DISCUSSION

Using an immunoblot assay, several putative autoantigens in immune thrombocytopenia have been demonstrated. Recently, it has also been demonstrated that certain platelet proteins bind normal serum IgG in an immunoblot assay. In this article, we characterize a 120-Kd antigen, one of the most frequently detected autoantigens in immune thrombocytopenia, as identical to our previously reported 124-Kd antigen and vinculin. This 120-Kd protein has the same molecular weight under nonreduced or reduced conditions, is not a surface protein, and has a PI of 6.4 to 6.5. From these data, one likely candidate for this protein is the intracellular platelet protein, vinculin. Indeed, monoclonal antivinculin antibody reacts with this 120-Kd protein, and purified human platelet vinculin as determined by ELISA. Microtiter wells coated with purified human platelet vinculin were incubated with 50 µL of a 1:20 dilution of serum antibodies for 1 hour, and the extent of binding of IgG antibodies was measured by addition of AP-conjugated goat anti-human IgG and appropriate color development. Absorbance at 405 nm is indicated on the ordinate. The positions of absorbance values obtained with PD antiserum, MOS antiserum, RY antiserum, and normal serum 1 are indicated. Bars indicate mean values.

Fig 7. Titration curves of antivinculin antibodies in sera from patients with immune thrombocytopenia and normal subjects as determined by ELISA. Direct antigen ELISA using purified human platelet vinculin was performed as described in Fig 5 using various dilutions of serum antibodies. The following antibodies were tested: PD antiserum (○); MOS antiserum (▲); RY antiserum (▼); normal serum from Fig 5 having the strongest reactivity with vinculin (○); normal serum 1 (□). The dashed line represents the absorbance value (mean + 3 SD) obtained using 11 normal sera that did not react with vinculin in the immunoblot assay.

Fig 6. Reaction of antibodies in sera of patients with immune thrombocytopenia and in sera of normal subjects with purified human platelet vinculin as determined by ELISA. Microtiter wells coated with purified human platelet vinculin were incubated with 50 µL of a 1:20 dilution of serum antibodies for 1 hour, and the extent of binding of IgG antibodies was measured by addition of AP-conjugated goat anti-human IgG and appropriate color development. Absorbance at 405 nm is indicated on the ordinate. The positions of absorbance values obtained with PD antiserum, MOS antiserum, RY antiserum, and normal serum 1 are indicated. Bars indicate mean values.

histories were available. These clinical correlations show that the incidence of antivinculin antibody in patients with chronic ITP is similar to that in patients with nonimmune thrombocytopenia. It is noteworthy that PD is a patient with chronic myelomonocytic leukemia suffering from immune thrombocytopenia after tumor lysis syndrome, and MOS is a patient with acute ITP associated with herpes zoster infection. These data suggest that the induction of antivinculin antibody occurs more often secondary to cell destruction rather than as a result of a primary autoimmune mechanism.

To examine whether there is a relationship between the occurrence of antivinculin and anti-DNA antibodies, nine patient sera, including PD and MOS, that were found to contain antivinculin antibodies in the immunoblot assay were examined for the presence of anti-DNA antibodies.
let vinculin is bound by antibody that binds to the 120-Kd protein. Additional evidence confirms that the 120-Kd antigen seen in SLE and reported by Jouhikainen et al. is also identical to vinculin, because a prototype serum used in that study behaves, in our hands, exactly like those sera used in this study. Immunoblots after two-dimensional isoelectric focusing/SDS-PAGE demonstrate four other components detected by antivinculin antibody. The 140-Kd component is probably metavinculin, a protein of higher molecular weight that is immunologically related to vinculin. It is noteworthy that the 80-Kd component is preferentially detected in two-dimensional isoelectric focusing/SDS-PAGE. Rosenfeld et al. reported that the concentration of an 85- to 90-Kd degradation product of vinculin increases in high salt extracts of platelets. Given the high salt concentrations used in isoelectric focusing gels, it is probable that the 80-Kd component is the same major degradation product of vinculin observed by Rosenfeld et al.

The IgG binding to vinculin appears to be immunologically specific because (1) immunoblots after two-dimensional isoelectric focusing/SDS-PAGE demonstrate that a murine monoclonal antivinculin antibody reacts with exactly the same five components that are detected by PD serum; (2) none of these five components are detected with those normal sera that do not contain antibody specific for vinculin; and (3) Fab fragments of IgG from certain patient sera react with purified vinculin. Although Fab fragments produced a strong band, it is weaker compared with that produced by IgG. However, this is likely the result of differences in the reaction of secondary antibodies rather than a reflection of real differences in specificity.

Using a sensitive direct antigen ELISA, we demonstrated that 55 of 82 patient sera (67%) contain IgG antibodies that bind to vinculin. However, we also demonstrated an unexpectedly high incidence of antivinculin IgG antibodies in normal sera: 32 of 80 normal sera also contain antivinculin antibodies (40%). Because these normal sera were obtained from healthy subjects with no history of pregnancy or blood transfusion, our data suggest that naturally occurring IgG antibodies that bind to vinculin are present in a high percentage of many normal sera. Recently, it has become apparent that the normal immune system has the capacity to produce antibodies to a variety of self-antigens, including cytoplasmic and cytoskeletal proteins, soluble plasma constituents, and nucleic acids. Such naturally occurring (auto)antibodies constitute a substantial part of normal serum circulating immunoglobulins. We demonstrate here the existence of naturally occurring antibodies specific for vinculin, a finding that is consistent with the recent study of Pfuehler et al.

It is noteworthy that there are, albeit infrequent, discrepancies between the results of the immunoblot assay and the direct antigen ELISA. As one example, normal serum 2 reacts with denatured vinculin in the immunoblot assay but is negative in ELISA using purified vinculin. Antibodies in normal serum 2 may thus distinguish cryptic antigens expressed only on denatured vinculin. Whereas patient sera PD and MOS showed a similar reactivity in the immunoblot assay, PD had an eightfold stronger reactivity than MOS when tested against purified vinculin in the ELISA. These data suggest, not surprisingly, that the epitope(s) detected on vinculin are heterogeneous. One might define at least two classes of epitopes: one class that is expressed on purified vinculin as well as denatured vinculin, and a second class composed of cryptic antigens that are exposed by SDS. Both classes of epitopes are recognized by antivinculin antibodies in normal sera as well as patient sera.

Our data also demonstrate differences between antivin- culin antibodies in patient sera and those in normal sera. The incidence of anti-vinculin antibodies in patient sera (67%) is significantly \(P < .01 \) higher than that of naturally occurring antivinculin antibodies (40%); the titers of antibodies in some patient sera, for example, PD and MOS, are significantly higher than those in any normal serum; and there is a significant difference \(P < .05 \) between the mean levels of antivinculin antibodies in patient and normal sera. At this time, it is still difficult to differentiate patients from normal subjects based solely on the strength or titer of circulating antivinculin antibodies. The levels of most antivinculin antibodies in patient and normal sera overlap, and the titration curves of antivinculin antibodies in many patient sera are similar to those observed with some normal sera.

Taken together, our findings suggest that antivinculin antibodies are present both in patient sera and sera of certain normal subjects, and that only modest quantitative differences of antibody levels differentiate patient and normal sera. Although the role of these antibodies remains to be determined, it is unlikely that antivinculin antibodies play a role in the etiology of immune thrombocytopenia. Indeed clinical analysis suggests that cell destruction may contribute to the induction of antivinculin antibody. In patients already affected by immune thrombocytopenia, antivinculin antibodies may be generated in a secondary immune process subsequent to removal of damaged platelets and could have important pathologic effects.

ACKNOWLEDGMENT

We thank Dr Keith Burridge (Chapel Hill, NC) for providing purified human platelet vinculin.

REFERENCES

Antivinculin antibodies in sera of patients with immune thrombocytopenia and in sera of normal subjects

Y Tomiyama, R Kekomaki, J McFarland and TJ Kunicki