Inhibition of Human Platelet Reactivity by Endothelium-Derived Relaxing Factor
From Human Umbilical Vein Endothelial Cells in Suspension: Blockade of
Aggregation and Secretion by an Aspirin-Insensitive Mechanism

By M. Johan Broekman, Ana M. Eiroa, and Aaron J. Marcus

To determine a role for endothelium-derived relaxing factor/nitric oxide (EDRF/NO) in regulation of human platelet reactivity by human endothelial cells (EC), we studied combined suspensions of human umbilical vein endothelial cells (HUVEC, passage 2 through 3) and washed human platelets. Confluent HUVEC monolayers were treated with aspirin (1 mmol/L) to prevent prostacyclin (PGI₂) formation, washed, and harvested. Aspirin-treated platelets alone (58 x 10⁶) were fully aggregated by thrombin at 0.05 U/mL or more. In the presence of 10³ HUVEC, however, platelet serotonin release and aggregation in response to thrombin at doses as high as 0.5 U/mL were blocked. We demonstrated for the first time that inhibition of aggregation and serotonin release, due to EDRF/NO, occurred in parallel. HUVEC-dependent inhibition of platelet responsiveness was enhanced by superoxide dismutase (SOD) and reversed by hemoglobin. The inhibitory effect was also reversed by preincubation of HUVEC with N⁶-monomethyl-L-arginine (NMA) or N⁶-nitro-L-arginine (NNA) through competitive blockade of arginine metabolism. Pretreatment of platelets with methylene blue indicated that EC-dependent inhibition of platelet reactivity occurred through activation of platelet soluble guanylate cyclase. When platelets and HUVEC were separated by a permeable membrane and both cells were stimulated by thrombin, platelets remained unresponsive. This indicated that inhibition was induced by a fluid-phase mediator, independent of direct cell–cell contact. These data demonstrate that EDRF/NO formation from L-arginine by human EC plays an important role as an aspirin-insensitive fluid-phase inhibitor of human platelet reactivity.

© 1991 by The American Society of Hematology.

MATERIALS AND METHODS

Materials. Materials used were HEPES-buffered saline (HBS) (in mmol/L): NaCl 137.3, KCl 3.64, HEPES 10, glucose 11, pH 7.4. Complete medium was medium 199 with Earle’s salts and 25 mmol/L HEPES (GIBCO, Grand Island, NY) supplemented with 20% human serum, 2 mmol/L L-glutamine (Sigma, St Louis, MO), 100 U/mL penicillin, and 100 pg/mL streptomycin (Sigma). Collagen/EDTA consisted of equal volumes collagenase (type I, 200 U/mL; Worthington, Freehold, NJ) in HBS and 0.02% EDTA/0.5% bovine serum albumin (BSA; Sigma, A-9647) in HBS. Incubation buffer (in mmol/L) was KCl 4.2, MgSO₄ 0.5, NaCl 135.5, Na₂HPO₄ 6.5, NaH₂PO₄ 1.5, glucose 5.6, pH 7.3. Tris-citrate buffer (in mmol/L) was Tris 63, NaCl 95, KCl 5, citric acid 12, pH 6.5.25⁰ACD anticoagulant (in mmol/L) was 75 trisodium citrate, 38 citric acid, and 135 glucose.

Human serum was prepared from 280 mL whole blood collected by free flow into sterile 50-mL plastic centrifuge tubes. To obtain serum, whole blood was clotted by incubation (37°C, 2 hours), centrifuged (2,000g, 20 minutes, 22°C), sterilized by filtration (0.45 μm followed by 0.2-μm pore size), and stored in 25-mL aliquots at −70°C.

Gelatin was obtained from Baker (Phillipsburg, NJ). Human hemoglobin (Sigma H-7379) was dissolved in water (65 mg/mL), reduced with sodium hydrosulfite (10-fold molar excess, 10 minutes, 22°C), dialyzed against 2 L water (4°C, 2 hours), and stored...

From the Divisions of Hematology-Oncology, Departments of Medicine, Department of Veterans Affairs Medical Center, and Cornell University Medical College, New York, NY.

Submitted October 19, 1990; accepted April 19, 1991.

Supported in part by grants from the Department of Veterans Affairs, and from the National Institutes of Health HL-29034 (M.J.B.), and HL-18828, HL-46403, and HL-47073 (A.J.M. and M.J.B.).

Address reprint requests to M. Johan Broekman, PhD, Thrombosis Research Laboratory, Rm 13025W, New York Veterans Affairs Medical Center, 423 E 23rd St, New York, NY 10010.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1991 by The American Society of Hematology.

NO-monomethyl-D-arginine volunteers who had taken 650 mg ASA 12 hours before donating were from Sigma. 14C-Serotonin (5-HT, 54 mCi/mmol) was from vine erythrocyte superoxide dismutase (SOD), and methylene blue were from Drs Moncada and Gross. HUVEC cyclooxygenase was inhibited with 1 mmol/L aspirin, dissolved in medium 199 (30 minutes, 37°C), after which HUVEC were passaged (1:3 split) with collagenase-EDTA and subcultured in 75-cm² flasks in complete medium. Cells reached confluence in about 3 days. Usually, EC from two to four cords were combined at first passage and further subcultured as a mixed population.

Isolation of HUVEC. HUVEC were isolated from fresh umbilical cords and cultured by the method of Jaffe et al.12,23 with slight modifications. Tissue culture flasks were coated with 0.2% gelatin. Primary cultures were grown in 25-cm² flasks in complete medium. Confluent monolayers with the typical cobblestone morphology of EC were passaged (1:3 split) with collagenase/EDTA and subcultured in 75-cm² flasks in complete medium. Cells reached confluence in about 3 days. Usually, EC from two to four cords were combined at first passage and further subcultured as a mixed population.

Eighteen hours before experiments, HUVEC, at or near confluency, were supplied with fresh complete medium. In preliminary experiments, extended subculturing, as well as other culture conditions (absence or presence of EC growth supplement and heparin, fungizone) had minimal effects. HUVEC from up to passage 8 inhibited platelet reactivity through a mediator with EDRF/NO characteristics (data not shown); however, the data we present were obtained with HUVEC of passages 2 and 3. To isolate EC, confluent monolayers were washed twice with prewarmed (37°C) HBS. HUVEC cyclooxygenase was inhibited with 1 mmol/L ASA, dissolved in medium 199 (30 minutes, 37°C), after which monolayers were carefully washed twice more with HBS to remove ASA. HUVEC were then isolated by collagenase/EDTA treatment, centrifuged (200g, 8 minutes, 22°C) and resuspended in incubation buffer. Centrifugation and resuspension were repeated twice to complete removal of serum-containing medium. Final EC suspensions were adjusted to 10⁶ cells/mL and maintained at 22°C. These procedures yielded 3 × 10⁴ EC/75-cm² flask; EC suspensions had a viability of 75% to 90% (trypan blue exclusion). Radioimmunoassays for PGI, of stimulated HUVEC suspensions with or without ASA-treated platelets, verified inhibition of cyclooxygenase (data not shown).

Platelet isolation. Washed human platelet suspensions were prepared25,27 using platelet-rich plasma (PRP) obtained from volunteers who had taken 650 mg ASA 12 hours before donating blood. To prepare [¹⁴C]-5-HT-labeled platelets, 0.5 μCi [¹⁴C]-5-HT was added to each of four 50-mL centrifuge tubes containing 6 mL acid citrate dextrose (ACD) anticoagulant before blood collection. This resulted in complete (>90%) uptake of [¹⁴C]-5-HT by platelets during the blood collection process, determined by comparing the [¹⁴C]-5-HT content of PRP and platelet-poor plasma (PPP); prepared by centrifugation of a 250-μL aliquot of PRP, 15,000g, 1 minute, 22°C). Platelets were washed twice (4°C) in Tris-citrate buffer, resuspended in 0.154 mol/L NaCl, and adjusted to 10⁹ platelets/mL. Before platelets were washed, complete inhibition of cyclooxygenase by ASA was verified in an aliquot of PRP by the absence of aggregation to 1 mmol/L sodium arachidonate.

Aggregometry. Platelet responses to agonists were recorded¹ in a Lumi aggregometer (Chronolog, Havertown, PA). A “platelet-poor” sample, containing all components except platelets, served as control for 100% light transmission. To correct for light absorption by HUVEC suspensions, the platelet-poor cuvette contained a number of HUVEC equal to the “platelet-rich” cuvette.

Aliquots of platelets (58 × 10⁶) and HUVEC (10⁶) were preincubated in combined suspension with stirring (1,000 rpm, 3 minutes, 37°C) in incubation buffer (final volume 350 μL) containing 0.7 mmol/L CaCl₂. 5-HT–labeled platelets, with or without EC, were treated with 2.5 μmol/L L-arginine or 1 minute before stimulation to block uptake of released 5-HT.

After addition of agonist, platelet aggregation responses were recorded for 4 minutes. Changes in light transmission at 4 minutes were used to measure platelet aggregation. To arrest 5-HT secretion, cuvettes were then immediately placed on melting ice.

Fluid-phase transfer of HUVEC-derived EDRF/NO to platelets. To ascertain that EC-dependent inhibition of platelet reactivity (measured as 5-HT release) was due to a fluid-phase component and did not require direct cell-cell contact (as do ADPases9), HUVEC and platelets were separated by a filter membrane using a “fluid-phase transfer system.” This system was designed after attempts to separate EDRF-like activity from HUVEC by filtration through 0.45-μm filters or by short centrifugation could not be physically accomplished. HUVEC suspensions were added to Millicell-HA 12-mm culture plate insert (pore size 0.45 μm). The insert was placed in its original packaging, which was used as a container for the platelet suspension (Fig 1). Each compartment contained cells (EC and platelets, respectively) in a final volume of 250 μL and was efficiently stirred at approximately 700 rpm. The combined fluid-phase transfer system was supported in a constant temperature bath (37°C) on a magnetic stirrer, allowing simultaneous or sequential addition of agonist (or drug) to each compartment independently (Fig 1). Imipramine was added to each compartment before addition of agonist. Four minutes after addition of agonist to both compartments, the complete transfer system was placed on ice to arrest 5-HT secretion. The contents of the platelet compartment were centrifuged (3 minutes, 16,000g, 4°C), and secreted 5-HT was quantitated by scintillation counting of 50 μL cell-free releasate. Aggregation responses were observed qualitatively.
HUMAN EDRF/NO INHIBITS PLATELET REACTIVITY

Platelet Compartment HUVEC Compartment

Fig 1. System for demonstration of fluid-phase transfer of EDRF, produced by HUVEC. A culture plate insert (filter membrane) separated EC and platelet suspensions. Upper and lower compartments contained 10^6 HUVEC and 58 x 10^8 platelets, respectively, in a final volume of 250 μL each, stirred at 700 rpm (37°C). After 4-minute preincubation and 4-minute thrombin stimulation, platelet serotonin secretion was measured by scintillation counting and aggregation was evaluated visually.

RESULTS

ASA-treated HUVEC suspensions inhibit aggregation of thrombin-stimulated, ASA-treated platelets through production of EDRF/NO. In baseline dose–response experiments, in the absence of HUVEC, maximal aggregation of ASA-treated platelets was induced by 0.05 U/mL or more of thrombin. Baseline platelet responses to ASA-treated platelets was induced by 0.05 U/mL or more of thrombin varied from moderate to full and were donor-dependent (data not shown). With 10^6 ASA-treated EC added, platelet aggregation was completely blocked on stimulation of combined suspensions with 0.3 to 0.5 U/mL thrombin (Table 1). Therefore, ASA-treated EC completely inhibited platelet aggregation at levels of thrombin 10 times greater than those that fully aggregated platelets alone. Because PGI2 was not formed in these ASA-treated EC–platelet suspensions, as verified by radioimmunoassay (RIA), the inhibition demonstrated was independent of this eicosanoid. This ASA-insensitive blockade of platelet aggregation by EC was completely reversed by 15 μmol/L hemoglobin (Fig 2A and B, Table 1). In contrast, inhibition by EC was enhanced by 15 U/mL SOD. This was most effectively demonstrated in an experiment in which some aggregation in the absence of SOD did occur (Fig 2A). Platelet aggregation occurred with very similar slope and maximum extent whether hemoglobin was added immediately before or immediately after thrombin as well as when it was added 3 minutes after thrombin (Fig 2B).

EDRF/NO is derived from one of the guanidino nitrogen of l-arginine, as demonstrated with a specific arginine analogue NMA in cultured porcine EC. In our system, 3 to 5 minutes preincubation of ASA-HUVEC with 1 mmol/L NMA reversed HUVEC-dependent inhibition of platelet aggregation (Fig 3, Table 1). This reversal was comparable to that attained with the EDRF scavenger hemoglobin. Addition of excess l-arginine (substrate for EDRF formation) to NMA before incubation prevented reversal of EC inhibition of platelet aggregation by NMA. Thus, l-arginine restored complete inhibition of platelet aggregation by ASA-treated HUVEC suspensions (Fig 3, Table 1). In contrast to NMA, the D-isomer was ineffective in prevention of EC inhibition of platelet aggregation (data not shown). Another competitive inhibitor of arginine metabolism, NNA, also reversed inhibition of platelet aggregation by HUVEC with an apparent IC50 of 20 μmol/L (data not shown).

EDRF/NO activates soluble guanylate cyclase, an enzyme inhibitable by methylene blue. Platelets pre-treated in stock suspension with 10 μmol/L methylene blue (30 minutes, 22°C) before incubation with HUVEC aggregated on thrombin stimulation, in contrast to untreated platelets (Fig 4, Table 1). Extended pretreatment was required to demonstrate the methylene blue effect because its addition at 0.3 μmol/L final concentration during the 3-minute preincubation of EC–platelet mixtures before thrombin addition was ineffective (Fig 4). The action of methylene blue was not due to generation of superoxide (which destroys NO), because the results were essentially unaltered by SOD (Fig 4). These data demonstrate that HUVEC-derived EDRF/NO was acting through activation of platelet soluble guanylate cyclase.

ASA-treated HUVEC suspensions inhibit 5-HT release by ASA-treated platelets through production of EDRF/NO. 5-HT release was used as a parameter to measure effects of thrombin stimulation. With platelets alone, complete aggregation responses to thrombin (0.1 to 0.5 U/mL) were accompanied by 73.5% ± 10.9% to 94.2% ± 11.3% 5-HT release (data not shown). At 0.3 U/mL thrombin, the presence of HUVEC reduced platelet 5-HT release to 4.8% ± 4.3% (Table 2). Addition of SOD always augmented decreases in 5-HT release in the presence of HUVEC (data not shown). Removal of superoxide anion extended the half-life (t1/2) of NO, thereby enhancing HUVEC-dependent inhibition of platelet secretion as it did aggregation (Fig 2A). When combined suspensions of HUVEC and platelets were stimulated in the presence of hemoglobin, HUVEC-dependent inhibition was reversed and 5-HT secretion increased from 4.8% to 72.4% (Table 2).
Fig 2. (A) Enhancement of HUVEC inhibition of platelet aggregation by SOD (15 U/ml), and reversal by 15 μmol/L hemoglobin added 45 seconds before 0.3 U/ml thrombin. Aggregation curves are from a single experiment, representative of more than 20. (B) In separate experiments, 15 μmol/L hemoglobin (arrows) reversed HUVEC inhibition of aggregation and 5-HT release (boxes), whether added 20 seconds before (curve A), 10 seconds after (curve B), or 3 minutes after (curve C) 0.5 U/ml thrombin. In controls without hemoglobin added (curve D), aggregation and 5-HT release remained inhibited. Aggregation curves are from a single experiment, representative of six.

Effects of hemoglobin were similar whether added before or 10 seconds or 3 minutes after thrombin (Fig 2B).

Preincubation of HUVEC with NMA also resulted in an increase in 5-HT secretion (to 68.7%, Table 2). Similarly, platelet pretreatment with methylene blue reversed EC-dependent inhibition of 5-HT release (Fig 4). Thus, EDRF/NO modulation of platelet aggregation and dense granule secretion occurred in parallel.

ASA-treated HUVEC suspensions inhibit 5-HT secretion by ASA-treated platelets in the absence of cell-cell contact. EDRF/NO readily diffused from EC to platelets in a system devised to separate cells physically while permitting interaction through fluid-phase mediators (Fig 1). The presence of HUVEC reduced 5-HT secretion in the platelet compartment to 16.5% of control (Table 3). Control experiments demonstrated that molecules much larger than NO, such as thrombin, did not readily cross the membrane of the fluid-phase transfer system. Addition of hemoglobin to both compartments of the transfer system reversed inhibition of secretion (to 94.7% of control, Table 3). NMA or NNA pretreatment of HUVEC had a similar effect and reversed inhibition of release to 85.4% of control (Table 3). The effects of NNA were blocked when a 10-fold excess of arginine was included during preincubation (Table 3), confirming that metabolism of a guanidino nitrogen of arginine was required to generate this fluid-phase inhibitor of platelet reactivity.

DISCUSSION

Our results demonstrate for the first time that single-cell suspensions of HUVEC block stimulated platelet 5-HT secretion and aggregation through generation of a short-lived, ASA-insensitive, fluid-phase reactant with the characteristics of EDRF/NO. Use of HUVEC suspensions allowed EC/platelet ratios of 1:58, which more closely approximate in vivo situations (up to 1:1 in the capillary circulation). Such ratios are unattainable when EC monolayers are overlaid with platelet suspensions. In addition, cell–cell interactions between platelets and single cell suspensions of EC occur to a greater extent than do
HUMAN EDRF/NO INHIBITS PLATELET REACTIVITY

Fig 3. Reversal of EC-dependent inhibition of platelet aggregation and serotonin release (boxes) to 0.3 U/mL thrombin and requirement for metabolism of a guanidino nitrogen in L-arginine. HUVEC were preincubated with NMA (N\textsuperscript{\text{-}}-monomethyl-L-arginine acetate, 1 mmol/L, 3 minutes) before addition of platelets. The upper curve was obtained in 9 of 11 experiments. Preincubation of HUVEC with NMA with excess L-arginine added (10 mmol/L) restored inhibition of platelet responsiveness (representative of four experiments). Similar results were obtained with N\textsuperscript{\text{-}}-nitro-L-arginine methyl ester (NNA).

EDRF/NO through inhibition of platelet-soluble guanylate cyclase.

HUVEC produced fluid-phase EDRF/NO whether or not direct cell-cell contact occurred. Thus, platelet reactivity was blocked in both aggregometry experiments (Figs 2 through 4) and in the fluid-phase transfer system (Fig 1, Table 3). Several features distinguished this fluid-phase transfer system from other methods unsuccessful in yielding an EDRF-containing cell-free EC supernate. Effective mixing efficiently transferred a water-soluble gas (NO)

Table 2. Endothelial Cells Inhibit Serotonin Secretion by Thrombin-Stimulated Platelets: Effects of EDRF Inhibitors

<table>
<thead>
<tr>
<th>Additions</th>
<th>Serotonin Secreted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets alone</td>
<td>81.0 ± 6.3</td>
</tr>
<tr>
<td>+ HUVEC</td>
<td>4.8 ± 4.3</td>
</tr>
<tr>
<td>+ HUVEC + Hb</td>
<td>72.4 ± 13.6</td>
</tr>
<tr>
<td>+ HUVEC + NMA</td>
<td>68.7 ± 11.5</td>
</tr>
</tbody>
</table>

Values are means ± SD (n = 4 to 6) serotonin secreted by platelets (in aggregometer cuvettes) on stimulation with 0.3 U/mL thrombin, expressed as percentage of serotonin incorporated. Hb 15 μmol/L was added 45 seconds before thrombin; NMA 1 mmol/L was preincubated with HUVEC for 3 minutes (37°C) before addition of platelets.
Table 3. Endothelial Cells Inhibit Serotonin Secretion by Thrombin-Stimulated Platelets in a Fluid-Phase Transfer System: Effects of EDRF Inhibitors

<table>
<thead>
<tr>
<th>Additions</th>
<th>Serotonin Secreted (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelets alone</td>
<td>100</td>
</tr>
<tr>
<td>+ HUVEC</td>
<td>16.5 ± 9.8 (n = 5)</td>
</tr>
<tr>
<td>+ HUVEC + Hb</td>
<td>94.7 ± 5.7 (n = 4)</td>
</tr>
<tr>
<td>+ HUVEC + NMA/NNA</td>
<td>64.1 ± 16.5 (n = 4)</td>
</tr>
<tr>
<td>+ HUVEC + NNA + arginine</td>
<td>30.1 ± 8.7 (n = 3)</td>
</tr>
</tbody>
</table>

Serotonin secretion by thrombin-stimulated platelets was inhibited by a fluid-phase reactant (Fig 1) and was restored by inhibitors of EDRF formation. Data shown are means ± SD, expressed as percentage of controls (platelets alone). HUVEC and platelets (upper and lower compartments, respectively) were preincubated 4 minutes before addition of thrombin (0.3 U/mL) to each compartment. Hb 15 μmol/L was added to both compartments 45 seconds before thrombin. The arginine analogues NMA (1 mmol/L) or NNA (0.5 mmol/L) as well as arginine (5 mmol/L) were preincubated with HUVEC for 3 minutes (37°C) before platelets were added to the lower compartment (Fig 1).

from one compartment to the other across a membrane with 0.45-μm pore size. Thus, EDRF/NO (τ% 3 to 5 seconds) did not decay before exerting its inhibitory effect. Moreover, “degassing” of the NO at the air–filter interface (as with syringe-type filters) did not occur, thus preventing loss of the active principle from the cell-free supernate.

Hemoglobin was an effective tool with which to demonstrate the presence of EDRF/NO in stimulated HUVEC suspensions. The heme group of hemoglobin binds NO and renders the NO unavailable for interaction with soluble guanylate cyclase in EDRF target tissues. In addition, hemoglobin solutions may enhance formation of superoxide anion, which is known to inactivate NO. We noted that SOD enhanced HUVEC-dependent inhibition of platelet reactivity, which further supports the concept that EDRF/NO is involved in the inhibition.

The arginine analogues NMA and NNA blocked HUVEC inhibition of platelet reactivity in a dose-dependent manner (Fig 3). This effect was overcome by preincubation with excess l-arginine, demonstrating a requirement for an unblocked guanidino group in substrate l-arginine. Twice in 11 independent experiments, NMA pretreatment of HUVEC was ineffective; this may have resulted from variations in cell permeability for NMA in different EC preparations. Use of NMA to inhibit NO synthesis from l-arginine may also be subject to caveats, however, because HUVEC may metabolize NMA. Demethylation of NMA would result in increased intracellular levels of arginine, the substrate for NO synthesis. In such instances, NMA would be an ineffective inhibitor of NO formation. NNA pretreatment of HUVEC was ineffective in only one of eight independent experiments. Enzymatic removal of the nitro substituent in NNA has not been reported.

Formation of EDRF/NO by human endothelium has implications for thrombosis as well as hemostasis. The short τ% of EDRF/NO limits its effects to the immediate microenvironment. This is further enhanced by the inhibitory effects of hemoglobin, and, of note, by intact erythrocytes. NO scavenging by erythrocytes as a consequence of their hemoglobin content would constitute a proaggregatory property of these cells. This is clearly distinct from the enhancement of platelet reactivity by intact erythrocytes, but not erythrocyte lysates, as recently reported. Thus, EDRF/NO represents an effective, localized mechanism for prevention of excessive platelet accumulation. This occurs by inhibition of both platelet secretion (5-HT release) and recruitment (aggregation). Concomitantly, local blood flow is enhanced by the vasodilatory action of EDRF on vascular smooth muscle. Our finding that platelet shape change is not affected by EDRF/NO (Figs 2 through 4) indicates that initial platelet activation does indeed occur. This strongly suggests that platelet hemostatic potential is preserved.

The data obtained when hemoglobin was added 10 seconds or 3 minutes after thrombin (Fig 2B) demonstrate that EC inhibition of platelet reactivity through EDRF/NO requires continued generation of EDRF/NO. The prompt initiation of both platelet aggregation and 5-HT release on hemoglobin addition, even 3 minutes after thrombin, also indicates that thrombin was not neutralized by HUVEC suspensions during incubation (Fig 2B, curve C). This observation was supported by theoretical considerations. The number of EC used (10⁹) furnish a maximum of only 10¹² molecules of thrombomodulin to serve as receptors for thrombin. This is less than 10% of the number needed for neutralization of thrombin added (0.15 U/0.5 mL total volume).

The above data suggest that EDRF/NO is an important platelet inhibitory autacoid formed by “healthy” endothelium and is unaffected by aspirin treatment. In contrast, endothelium in atherosclerotic lesions may be deficient in EDRF production. Our demonstration that HUVEC generate EDRF/NO in culture opens a new approach for further in vitro study of the control mechanisms governing formation of this autacoid.

The platelet inhibitory effects of EDRF/NO demonstrated in combined suspensions of ASA-treated platelets and ASA-treated HUVEC (Figs 2 through 4) provide evidence that fluid-phase antiaggregatory properties of EC are present in the complete absence of PGI₂ production. In addition, if cyclooxygenase is not inactivated by aspirin, the effects of EDRF actually synergize with those of PGI₂ through inhibition by cGMP of cAMP phosphodiesterase. These data suggest that the direct inhibitory action of EC cyclooxygenase metabolites has been overemphasized. Currently available therapeutic methods for thrombotic diatheses attributable to increased platelet reactivity are modest. Increasing EDRF/NO formation in the vasculature may enhance the platelet inhibitory potential of endothelium and would be a new approach to prevent or attenuate thrombosis.

ACKNOWLEDGMENT

We thank Corazon Delfin, and staff (Department of Obstetrics and Gynecology, Booth Memorial Medical Center, Flushing, NY) and Dr Janet Stein, Providencia Monchek, Barbara Walker, and Kum Mack (Department of Obstetrics and Gynecology, Beth Israel Medical Center, New York, NY) for cooperation in obtaining umbilical cords, Dr Katherine A. Hajjar for advice concerning HUVEC tissue culture techniques, and Jeffrey M. Sequeira and Lenore B. Safier for helpful discussions.
REFERENCES

38. McCall TB, Boughton-Smith NK, Palmer RMJ, Whittle BJR, Moncada S: Synthesis of nitric oxide from L-arginine by

Inhibition of human platelet reactivity by endothelium-derived relaxing factor from human umbilical vein endothelial cells in suspension: blockade of aggregation and secretion by an aspirin-insensitive mechanism

MJ Broekman, AM Eiroa and AJ Marcus