Familial hemophagocytic lymphohistiocytosis (FHL) is a frequently missed and almost uniformly fatal childhood disorder. It is characterized by fever, hepatosplenomegaly, cytopenia, coagulopathy, and hypertriglyceridemia. The pathogenesis of FHL is not known but the above clinical and laboratory findings are compatible with reported in vitro and in vivo effects of several inflammatory cytokines. We measured circulating interferon-γ (IFN-γ), tumor necrosis factor/cachectin (TNF), and interleukin-6 (IL-6) in nine children with FHL. During active disease, elevated IFN-γ was detected in seven of seven children, TNF in six of six, and IL-6 in two of six children studied. Thus, important inflammatory cytokines are augmented in active FHL and may contribute to the pathogenesis of the disease. Soluble CD8 was also increased in seven of seven children, which suggests a pathophysiological importance of cytotoxic T lymphocytes. Because FHL appears to be associated with a systemic hypercytokinemia, our results also indicate that studies of FHL may contribute to the understanding of cytokine effects in vivo. Moreover, FHL is a hereditary disorder, suggesting that the hypercytokinemia is caused by a genetic defect in cytokine regulation. © 1991 by The American Society of Hematology.

MATERIALS AND METHODS

Patients. The study group consisted of nine children with FHL, five boys and four girls, between 2 months and 7 years old. They all had a clinical picture compatible with FHL and a lymphohistiocytic infiltration with hemophagocytosis in reticuloendothelial organs (Table 1). Two children had no pancytopenia at diagnosis, probably because of early recognition (no. 2) or previous steroid therapy (no. 8). All had siblings with FHL and/or parental consanguinity except one (no. 7) who was the first biologic child in the family.

Sampling of serum was performed during active disease as well as during remission. We defined the disease as active if the child was febrile (≥38°C, not caused by infection) and had splenomegaly or an increased degree of hemophagocytosis in a histopathologic specimen. Remission was defined as a lack of all signs of disease during at least 1 month, whether treatment was administered or not. The samples, which were stored frozen before analysis, did not always suffice for the study of all cytokines at each sampling occasion. The controls were 10 children (eight boys and two girls) between 2 months and 3 years old, who were studied with informed parental consent at follow-up more than 5 weeks after a bacterial infection.

TNF assay. TNF was assayed with an enzyme-linked immunosorbent assay (ELISA) developed in our laboratory. Protein A purified rabbit IgG antihuman TNF (anti-huTNF), produced in our laboratory, was diluted in a bicarbonate buffer, pH 9.0, to a concentration of 7 µg/mL for coating 96-well immunoassay plates (Nunc, Roskilde, Denmark) with 50 µL overnight at +4°C. After subsequent washing with phosphate-buffered saline (PBS) with 0.01% Tween 20, nonspecific binding of proteins to the plastic was blocked by 1 hour of incubation with 100 µL PBS containing 0.5% gelatin, whereafter 50 µL of samples to be tested as well as serial dilutions of TNF standard were allowed to incubate for 1 hour at room temperature. Each sample was assayed in duplicate. Bound TNF was detected after sequential incubation of biotinylated rabbit anti-TNF (5 µg/mL) and streptavidin-biotinylated horseradish peroxidase (HRP) complex (Amersham, UK) diluted to 1:1,000. As a substrate, o-phenylenediamine (OPD; Dakopatts, Glostrup, Denmark) was used and absorbance was measured at 492 nm in a Titertec Multiscan (Flow Laboratories, Irvine, UK). The detection limit, defined as the lowest concentration of TNF with absorbance significantly different from the negative controls, was 5 to 10 U/mL (80 to 160 pg/mL) and no cross-reactivity with recombinant huIL-1, IL-2, IFN-α or IFN-γ was observed.

IL-6 assay. IL-6 was determined with ELISA reagents (Quantikine; Research and Diagnostic Systems, Minneapolis, MN). The reaction was measured with a chemiluminescence system (Luminoscan, Labsystems Inc, Tyresö, Sweden) and the accuracy of the

From the Departments of Pediatrics, St Göran’s/Karolinska and Sachs’ Children’s Hospitals, the Department of Immunology, Karolinska Institute; and The National Bacteriological Laboratory, Stockholm, Sweden.

Supported by grants awarded by the Swedish Society for Medical Research, the Children’s Cancer Foundation of Sweden, the First of May Flower Foundation, the ‘Förenade Liv’ Mutual Life Insurance Company, the Swedish Medical Research Council, Swedish Cancer Society, and the King Gustaf V Jubilee Fund.

Address reprint requests to Jan-Ingel Henter, MD, Department of Pediatrics, Karolinska Institute, St Göran’s Children’s Hospital, S-112 81 Stockholm, Sweden.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1991 by The American Society of Hematology.

0006-4971/91/7811-0024$3.00/0
HYPERCYTOKINEMIA IN FHL

Table 1. Clinical Features, Laboratory Results, and Histologic Evaluation of FHL Patients Included in the Study

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consanguinity</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Siblings with FHL</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sex</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Age at onset (mo)</td>
<td>12</td>
<td>39</td>
<td>21</td>
<td>2</td>
<td>40</td>
<td>63</td>
<td>7</td>
<td>70</td>
<td>2</td>
</tr>
</tbody>
</table>

Clinical features (1st admission)

- Fever
- Hepatosplenomegaly
- Lymphadenomegaly
- Encephalopathy

Laboratory results (1st admission)

- Hemoglobin < 80 g/L
- Platelets < 20 x 10^9/L
- Neutrophils < 1 x 10^9/L
- Triglycerides ≥ 2 mmol/L

Histologic evaluation

- Hemophagocytosis

Abbreviations: b, bone marrow; l, lymph node; s, spleen.

All inflammatory cytokines studied, i.e., IFN-γ, TNF, and IL-6, were increased in the peripheral blood of children.
with active FHL, as compared with controls (Table 2, Figs 1 through 3). The elevation was reversible (Table 2). Most prominent was the increase of IFN-γ. The content of sCD8 was also markedly augmented during active disease.

All specimens taken during active FHL (n = 8) were positive for IFN-γ, whereas all samples taken during FHL in remission and from controls were negative (P < .01) (Fig 1). Two specimens with more than 50 U/mL (approximately 60 to 80 U/mL) were both taken during severe disease and the IFN-γ levels seemed to reflect well the severity of the disease. The T-lymphocyte product sCD8 was also markedly augmented during active FHL, as compared with controls (P < .01) (Fig 4). The sCD8 levels were moderately, but significantly, elevated (P < .01) also during remission.

TNF was also elevated in children with active FHL, as compared with controls (P < .05) (Fig 2). Detectable levels were recorded in all the children studied (n = 6). The maximum value recorded was 72 U/mL but mostly the increase was moderate (10 to 15 U/mL). The serum content of IL-6 was also increased, albeit only moderately, during active FHL, as compared with controls (P < .05) (Fig 3).

During remission, the serum amount of IL-6 was reduced, as compared with controls (P < .01), and not detectable (<12.5 pg/mL) in four of five FHL children studied.

The cerebrospinal fluid (CSF) of FHL patients was examined with regard to IFN-γ in six children. Two patients had detectable levels (no. 3 at onset and no. 7 at relapse) with 23 and 0.5 U/mL, respectively. Both specimens were taken during active cerebromeningeal disease. TNF was not

Table 2. Inflammatory Cytokines and sCD8 in FHL

<table>
<thead>
<tr>
<th></th>
<th>IFN-γ</th>
<th>TNF</th>
<th>IL-6</th>
<th>sCD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-off level</td>
<td>0.1 U/mL</td>
<td>5 U/mL</td>
<td>58 pg/mL</td>
<td>614 U/mL</td>
</tr>
<tr>
<td>FHL active</td>
<td>7/7</td>
<td>6/6</td>
<td>2/6</td>
<td>7/7</td>
</tr>
<tr>
<td>FHL remission</td>
<td>0/5</td>
<td>ND</td>
<td>0/5</td>
<td>5/5</td>
</tr>
<tr>
<td>Controls</td>
<td>0/9</td>
<td>3/10</td>
<td>1/9</td>
<td>0/9</td>
</tr>
</tbody>
</table>

Expressed as patients with serum concentrations above the cut-off level/all children studied.

Abbreviation: ND, not done.

* The detection limit of the assay.

† Mean value + 2 SD of controls.

Fig 1. Serum IFN-γ levels in patients with FHL (horizontal lines indicate median levels).

Fig 2. Serum TNF levels in patients with FHL (horizontal lines indicate median levels).

Fig 3. Serum IL-6 levels in patients with FHL (horizontal lines indicate median levels).
detected in CSF during active FHL (n = 4 children). Markedly elevated levels of sCD8 (>600 U/mL) during active FHL were found in two patients (no. 3 at onset and no. 7 at a relapse) with 4,700 and 750 U/mL, respectively.

DISCUSSION

Activated lymphocytes and mononuclear phagocytes constitute a rich source of several potent cytokines. Some of these have been collectively termed inflammatory cytokines because they are produced in high concentrations at inflammatory sites and exert a number of common effects related to inflammation. The present study shows that patients with active FHL have elevated serum levels of the inflammatory cytokines TNF, IL-6, and, particularly, IFN-γ. The findings indicate that these cytokines may have an important pathophysiologic role in this disorder, especially as the clinical and laboratory findings in FHL are in accord with many of their reported biologic effects. The increase in TNF, found in all children studied, was a well-known effect of TNF, and cachexia with muscular atrophy is also present in FHL (Henter, unpublished observation). Even less well understood features of FHL such as hypofibrinogenemia and decreased natural killer (NK)-cell activity may be explained by cytokines, because TNF has a procoagulant activity and has been associated with hypofibrinogenemia but also suppresses NK-cell activity. Moreover, TNF and IL-6 are principally produced by activated macrophages, which are numerous in FHL. Lymphocytes, the source of IFN-γ, are even more frequent in active phases of this lymphohistiocytic proliferative disorder.

The serum levels of IFN-γ correlated well with the clinical condition because IFN-γ was increased in all specimens of active FHL but below detection level in healthy controls, during FHL in remission, and during bacterial meningitis. Also, the levels of sCD8 were elevated in active FHL and correlated well with the clinical condition, indicating that the CD8+ lymphocytes are activated in FHL and that these cells may serve as a source of IFN-γ. These findings are in accord with the tremendous elevation of soluble IL-2 receptor (sIL-2R) in the serum of FHL patients, which has been reported recently and also indicates a prominent T lymphocyte activation during active FHL. Moreover, neopterin, a macrophage product principally released by IFN-γ has been shown to be markedly released in serum as well as spinal fluid in FHL children. The elevation of sCD8 seen during remission may reflect a continuous but subclinical activity of the disease and, because sCD8 is a sensitive marker for activation of the T-cell system, our results suggest that sCD8 may be a useful marker of disease activity in FHL.

The increase in TNF, found in all children studied, was mostly only moderate. Augmented levels were also found in three control samples, but similar findings have previously

Table 3. Typical Findings in FHL Compared With Reported Biologic Effects of Inflammatory Cytokines

<table>
<thead>
<tr>
<th>Findings in FHL</th>
<th>Effects of Inflammatory Cytokines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>Induction of fever</td>
</tr>
<tr>
<td>Cytopenia</td>
<td>Anemia, neutropenia, thrombocytopenia</td>
</tr>
<tr>
<td>Serum transaminase elevation</td>
<td>Serum transaminase elevation</td>
</tr>
<tr>
<td>Hypertriglyceridemia</td>
<td>Hypertriglyceridemia</td>
</tr>
<tr>
<td>Lipoprotein lipase suppression</td>
<td>Lipoprotein lipase suppression</td>
</tr>
<tr>
<td>Hypofibrinogenemia</td>
<td>Hypofibrinogenemia, procoagulant activity</td>
</tr>
<tr>
<td>Neurologic symptoms</td>
<td>Neurologic symptoms</td>
</tr>
<tr>
<td>Low NK-cell activity</td>
<td>Suppression of NK-cell activity</td>
</tr>
<tr>
<td>Lymphohistiocytic accumulation in RES</td>
<td>Lymphohistiocytic infiltration, secretion by macrophages and lymphocytes</td>
</tr>
<tr>
<td>Hemophagocytosis by activated macrophages</td>
<td>Macrophage activation</td>
</tr>
</tbody>
</table>
been made also by others.22 A possible explanation for the elevation of this monokine in the systemic circulation of FHL patients not being even more apparent may be that it serves as an autocrine and paracrine factor rather than a circulating hormone. Therefore, circulating TNF might represent leakage from the site of production in the affected tissues.7 IL-6 was only moderately elevated in FHL as compared with controls, whereas the levels during remission were mostly undetectable and even lower than the controls (Fig 3), but the clinical importance of these alterations is difficult to evaluate. Using a previously described methodology,23 we failed to detect intracellular TNF, IL-6, and IFN-γ in lymphocytes and macrophages of the peripheral blood in two patients. It can be speculated that the cytokine-producing cells leave the circulation when they have been activated.

The increase of the lymphocyte products IFN-γ and sIL-2R in FHL is apparent and excessive in comparison with the findings in another, more well-known pediatric inflammatory disorder, Kawasaki’s disease (KD). In a recent study of children with KD, serum levels of IFN-γ and sIL-2R did not exceed 2.5×10^3 U/mL and 10×10^3 U/mL, respectively.24 The median level of IFN-γ in FHL was greater than 30 times higher than in the children with KD. Komp et al reported sIL-2R values in patients with untreated hemophagocytic syndromes in excess of levels previously reported for benign conditions (values ranged from 23.6×10^3 to 75.2×10^3 U/mL in untreated patients).18

Of major importance in this context is the finding that prolonged exposure to a low recombinant huTNF concentration is more toxic than brief exposure to a concentration 100-fold higher.14 Because the cytokine production in FHL most probably is continuous as well as prolonged, the toxic effects can be marked despite moderate serum concentrations. As indicated by this study, none of the inflammatory cytokines is likely to operate alone; instead, many factors probably contribute to the pathogenesis of FHL. The etiology of FHL remains unknown, but we speculate that IFN-γ, in the light of its macrophage-activating capacity, stimulates the mononuclear phagocytic system and thus the release of monokines as TNF, which then serve as important disease promoters. Our results also suggest that IFN-γ is secreted, at least in part, by CD8+ lymphocytes. We speculate that FHL may be caused by a genetic disturbance in the regulation of cytokine activity inducing a hypercytokinemia.

REFERENCES

Hypercytokinemia in familial hemophagocytic lymphohistiocytosis

JI Henter, G Elinder, O Soder, M Hansson, B Andersson and U Andersson