Effect of c-kit Ligand on In Vitro Human Megakaryocytosis

By Robert A. Briddell, Edward Bruno, Ryan J. Cooper, John E. Brandt, and Ronald Hoffman

An evaluation of the effects of a recombinant, soluble form of the c-kit ligand alone and in combination with either granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-3 (IL-3) on the regulation of human megakaryocytosis was performed using a serum-depleted clonal assay system and a long-term bone marrow culture system. The effects of the c-kit ligand on the primitive megakaryocyte (MK) progenitor cell, the burst-forming unit-megakaryocyte (BFU-MK), and the more differentiated colony-forming unit-megakaryocyte (CFU-MK) were determined. The c-kit ligand alone had no megakaryocyte colony-stimulating activity (MK-CSA) but was capable of augmenting the MK-CSA of both GM-CSF and IL-3. The range of synergistic interactions of c-kit ligand varied with the class of MK progenitor cell assayed. In the case of the BFU-MK, the c-kit ligand synergistically augmented the numbers of colonies formed in the presence of IL-3, but not GM-CSF, but increased the size of BFU-MK-derived colonies cloned in the presence of both of these cytokines. However, at the level of the CFU-MK, c-kit ligand synergized with both GM-CSF and IL-3 by increasing both colony numbers and size. Although the c-kit ligand alone exhibited limited potential in sustaining long-term megakaryocytosis in vitro, it synergistically augmented the ability of IL-3, but not GM-CSF, to promote long-term megakaryocytosis. These data indicate that multiple cytokines are necessary to optimally stimulate the proliferation of both classes of MK progenitor cells and that the c-kit ligand plays a significant role in this process by amplifying the MK-CSA of both GM-CSF and IL-3.

© 1991 by The American Society of Hematology.

REGULATION OF human megakaryocytosis in vitro is controlled by a complex network of interacting cytokines. Recombinant granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-1α (IL-1α), IL-3, and IL-6 each have been shown to have effects, either alone or in various combinations, on the proliferation and differentiation of human megakaryocyte (MK) progenitor cells. GM-CSF and IL-3, in particular, have been noted to have profound effects on the proliferation of MK progenitor cells. Recently, soluble forms of the ligand for the c-kit gene product have been shown by several groups to augment the proliferation of both myeloid and lymphoid hematopoietic progenitor cells. The c-kit ligand exhibits potent synergistic action in conjunction with other CFSS resulting in increased colony number and size. Although the c-kit ligand has been variously referred to as mast cell growth factor (MGF), stem cell factor, kit ligand, or stem locus factor by various investigators, the c-kit ligand is thought to play a major role in stem cell development. SI/SI" mice, which are known to have defective hematopoiesis as a consequence of altered c-kit ligand activity, not only possess characteristically abnormal erythropoiesis, but also abnormal thrombopoiesis. Their bone marrows have substantially fewer MKs than normal siblings, yet the platelet mass and turnover have been reported to be normal. Individual MKs of SI/SI" mice are macrocytic and the number of MK progenitor cells in their bone marrow is reduced. Several groups have shown that SI locus mutants are associated with deletions or alterations of c-kit ligand genomic sequences. In addition, the administration of the recombinant c-kit ligand to SI/SI" mice resulted not only in a marked reduction of the severity of their macrocytic anemia, but also the development of leukocytosis and thrombocytosis. The observed doubling of number of platelets in animals receiving this cytokine led us to hypothesize that c-kit ligand may play an important role in the regulation of megakaryocytosis.

We have investigated the proliferative effects of a recombinant murine form of the c-kit ligand, MGF, alone and in combination with either GM-CSF or IL-3, on both CD34" DR" and CD34" DR" human bone marrow subpopulations to determine if this cytokine affects MK progenitor cells and/or long-term in vitro megakaryocytosis. While the CD34" DR" population is enriched for the burst-forming unit-megakaryocyte (BFU-MK), and the cell responsible for initiating long-term hematopoiesis in vitro, the CD34" DR" subpopulation contains the more differentiated MK progenitor cell, the colony-forming unit-megakaryocyte (CFU-MK). Although MGF alone had no significant influence on either CFU-MK or BFU-MK proliferation, it synergistically augmented the MK-colony-stimulating activity (MK-CSA) of both GM-CSF and IL-3 and the ability of IL-3 to sustain long-term megakaryocytosis in vitro. These data indicate that the c-kit ligand affects multiple stages of MK development by enhancing the effects of several cytokines on this process. These data and the observation that abnormal hematopoiesis, and likely megakaryocytosis, in the SI mutant mouse is due to a deficiency of this cytokine, suggest that the c-kit ligand plays an important role in mammalian megakaryocytosis.

MATERIALS AND METHODS

Bone marrow aspirates were obtained under local anesthesia from the posterior iliac crest of hematologically normal volunteers. Informed consent was obtained from the donors according to guidelines previously established by the Human Investigations Committee of the Indiana University School of Medicine, which adheres to the principles of the Declaration of Helsinki.

Cell separation techniques. Bone marrow aspirates were immediately diluted 1:1 with Iscove's Modified Dulbecco's Media (IMDM; GIBCO Laboratories, Life Technologies, Inc, Grand Island, NY) and rapidly diluted 1:1 with Iscove's Modified Dulbecco's Media. Bone marrow aspirates were obtained under local anesthesia from the posterior iliac crest of hematologically normal volunteers. Informed consent was obtained from the donors according to guidelines previously established by the Human Investigations Committee of the Indiana University School of Medicine, which adheres to the principles of the Declaration of Helsinki.
Island, NY) containing 20 U sodium-heparin/mL. Low-density mononuclear cells (LDMC) were obtained by density centrifugation over Ficoll-Paque (Pharmacia LKB Biotechnology Inc, Piscataway, NJ) at 750g. We further purified FR12-14 cells using monoclonal antibody (MoAb) staining and fluorescence-activated cell sorting (FACS) according to previously described methods. The cell populations containing high densities of CD34 and no detectable density of HLA-DR (CD34+ DR−) were described method.

EFFECT OF MGF ON MEGAKARYOCYTOPOIESIS

3.4.14,35 To obtain a cell population enriched for BFU-MK, we further separated LDMC by countercflow centrifugal elutriation to obtain those cells eluting at flow rates between 12 and 14 mL/min (FR12-14). We further purified FR12-14 cells using monoclonal antibody (MoAb) staining and fluorescence-activated cell sorting (FACS) according to previously described methods. The cell populations containing high densities of CD34 and no detectable density of HLA-DR (CD34+ DR−) were described method.

The CFU-MK, is present in elutriation fractions with a broader range of flow rates; therefore, a nonadherent, low-density, T-cell-depleted mononuclear cell subpopulation (NALDT−) was isolated from LDMC. We further purified NALDT− cells using MoAb labeling and FACS.

- Recombinant human and murine cytokines. The following recombinant purified human (h) and murine (m) cytokines were used in these studies: (1) hGM-CSF: specific activity (sp act) = 5.0 × 10^7 U/mg protein determined by granulocyte-macrophage colony formation from human bone marrow cells; Genzyme Corp, Boston, MA. (2) hIL-3: sp act = 1.0 × 10^7 U/mg protein determined by mixed colony formation from human bone marrow cells; Genzyme Corp. (3) m c-kit ligand (MGF): sp act = 1.0 × 10^7 U/mg protein determined by proliferative effects on MC6 cells; ImmuneX Corp, Seattle, WA.

Long-term suspension cultures. Long-term stromal cell-free bone marrow suspension cultures (LTBMC) were initiated and maintained as previously described. Briefly, poly styrene 35-mm tissue culture dishes containing 1 mL IMDM with 10% fetal bovine serum (HyClone, Logan, UT) were inoculated with 5 × 10^6 CD34+ DR− cells and incubated at 37°C in 100% humidified 5% CO₂ in air. At this time, and every 48 hours thereafter, cultures received no additions, 200.0 pg/mL GM-CSF, 1.0 ng/mL IL-3, 100.0 ng/mL MGF, or combinations of the aforementioned cytokines. Cytokine concentrations used in these studies were the optimal concentrations known to promote in vitro BFU-MK-derived colony formation as previously reported by our laboratory or reported in this communication. At weeks 2, 3, 4, 6, 8, 10, 12, and 14 the cultures were demidepopulated by removal of one half of the culture volume, which was replaced with fresh media. Cells in the harvested media were counted and assayed for MK progenitors.

Megakaryocyte progenitor cell assay system. Sorted cells or cells obtained during LTBMC were assayed for their ability to produce BFU-MK- and CFU-MK-derived colonies. The aforementioned cytokines were used alone or in various combinations as sources of MK-CSA. Cultures initiated were incubated for 14 or 21 days to quantitate CFU-MK- and BFU-MK-derived colonies, respectively, at 37°C in 100% humidified 5% CO₂ in air. After incubation, fibrin clots were fixed in situ in methanol-acetone (1:3) for 20 minutes, washed with phosphate-buffered saline, and air-dried.

Immunofluorescent identification of megakaryocyte colonies. 10E5 mouse monoclonal IgG antibodies recognizing the human platelet glycoprotein IIb-Ila complex (provided by Dr Barry S. Collier, State University of New York-Stony Brook) were used as immuno logic probes for identifying human MKs. 10E5 was subsequently tagged with fluorescein-labeled, affinity-purified, goat antinuine IgG (H + L) (Kirkegaard and Perry Laboratories, Inc, Gaithersburg, MD). The 35-mm Petri dishes were inverted, and the base area completely scanned at 1000 using an inverted microscope with reflected light fluorescent attachment (Olympus Corporation, Lake Success, NY). A CFU-MK-derived colony was defined as a cluster of three or more fluorescent cells. A BFU-MK-derived colony was described by criteria established by Long et al. These colonies appeared in human marrow cultures as clusters ≥ 42 fluorescent cells usually distributed in multiple foci of development, and are identified after 21 days of incubation. Human BFU-MK-derived colonies are distinguished from CFU-MK-derived colonies by duration of incubation required for their appearance in vitro (21 days v 12 days, respectively), colony size (108.6 ± 4.4 cells/colony v 11.2 ± 1.2 cells/colony, respectively), and foci of development (2.3 ± 0.4 foci/colony v 1.2 ± 0.1 foci/colony, respectively).

Statistical analysis. Results are expressed as means ± standard error of the means obtained from multiple experiments performed in duplicate. Statistical significance was determined using the Student t-test.

RESULTS

Both BFU-MK- and CFU-MK-derived colony formation by CD34+ DR− and CD34+ DR+ cells, respectively, were entirely dependent on the addition of either GM-CSF or IL-3 (Table 1). MGF stimulated neither BFU-MK-derived (Fig 1) nor CFU-MK-derived (Fig 2) colony formation when added alone at concentrations ranging from 12.5 to 100.0 ng/mL. MGF potentiated the ability of both suboptimal (125.0 pg/mL) and optimal (1.0 ng/mL) concentrations of IL-3 to promote BFU-MK-derived colony formation (Fig 1, P < .05). MGF had no effect on the ability of GM-CSF to promote BFU-MK-derived colony formation (data not shown). However, MGF did augment CFU-MK-derived colony formation when added in combination with optimal concentrations of GM-CSF (200.0 pg/mL) (Fig 2, P < .05) and suboptimal concentrations of IL-3 (125.0 pg/mL) (Fig 2, P < .05). MGF had no effect on CFU-MK-derived colony formation when added together with suboptimal concentrations of GM-CSF or optimal concentrations of IL-3 (data not shown). The effect of MGF on the number of cells composing CFU-MK- and BFU-MK-derived colonies is shown in Table 2. MGF increased the cellular

<table>
<thead>
<tr>
<th>Cytokines/mL</th>
<th>BFU-MK-Derived Colonies/5 × 10^5 Cells Plated*</th>
<th>CFU-MK-Derived Colonies/5 × 10^5 Cells Plated*</th>
</tr>
</thead>
<tbody>
<tr>
<td>No addition</td>
<td>0.0 ± 0.0 (20)†</td>
<td>0.0 ± 0.0 (8)†</td>
</tr>
<tr>
<td>25.0 pg GM-CSF (suboptimal)</td>
<td>1.0 ± 0.2 (10)</td>
<td>0.6 ± 0.4 (8)</td>
</tr>
<tr>
<td>200.0 pg GM-CSF (optimal)</td>
<td>2.6 ± 0.3 (10)</td>
<td>3.5 ± 0.8 (8)</td>
</tr>
<tr>
<td>125.0 pg IL-3 (suboptimal)</td>
<td>2.5 ± 0.2 (10)</td>
<td>3.0 ± 0.5 (8)</td>
</tr>
<tr>
<td>1.0 pg IL-3 (optimal)</td>
<td>5.0 ± 0.1 (10)</td>
<td>10.0 ± 0.9 (8)</td>
</tr>
</tbody>
</table>

*Each point represents the mean ± the standard error of the mean of data obtained from duplicate experiments.

†Each point represents the number of separate, duplicate experiments for the corresponding data point (n value). Pp < .05 when compared with the control culture which received no exogenous cytokine.
composition of both classes of MK colonies cloned in the presence of optimal concentrations of either GM-CSF or IL-3.

LTBMCs were initiated with 5×10^3 CD34$^+$ DR$^-$ marrow cells to which no cytokines, GM-CSF, IL-3, and MGF were added alone or in combination. Before the initiation of LTBMC, this cell population, obtained from two separate normal donors, contained no morphologically or immunologically identifiable MKs, no assayable CFU-MK, but did contain 6.2 ± 0.4 BFU-MK per 5×10^3 CD34$^+$ DR$^-$ cells. These LTBMCs did not contain a preestablished adherent cell layer, nor did such a layer develop during the period of observation. LTBMCs were demidepopulated and assayed for both BFU-MK and CFU-MK at weeks 2, 3, 4, 6, 8, 10, 12, and 14. In the LTBMCs not receiving any exogenous cytokines, viable cells were not detected after 1 week; assayable CFU-MK and BFU-MK were never detected during the period of observation (Fig 3). Those LTBMCs that received repeated additions of GM-CSF or IL-3 alone contained assayable CFU-MK for not greater than 10 weeks (Fig 3). No assayable BFU-MK were detected during the duration of the LTBMCs (data not shown). The IL-3-supplemented cultures produced nearly twice the number of assayable CFU-MK over 10 weeks of LTBMC as the cultures receiving GM-CSF (Fig 3). Repeated additions of MGF alone led to the production of small numbers of CFU-MK for approximately 4 weeks (Fig 3). The addition of MGF and GM-CSF in combination did not alter the number of assayable CFU-MK in LTBMC beyond that observed with repeated additions of GM-CSF alone, while the addition of MGF and IL-3 in combination led to a doubling of the cumulative production of CFU-MK during the period of LTBMC over that observed in LTBMC receiving IL-3 alone (Fig 3).

Table 2. Effects of the c-kit Ligand Together With Either IL-3 or GM-CSF on the Number of Cells Comprising MK Colonies

<table>
<thead>
<tr>
<th>Cytokines Added</th>
<th>No. of Cells</th>
<th>No. of Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFU-MK-Derived Colony</td>
<td>CFU-MK-Derived Colony</td>
<td></td>
</tr>
<tr>
<td>GM-CSF$^+$</td>
<td>56.7 ± 6.2 (7)$</td>
<td>3.1 ± 0.1 (17)$</td>
</tr>
<tr>
<td>GM-CSF + MGF$^+$</td>
<td>79.5 ± 7.55 (10)</td>
<td>4.1 ± 0.25 (23)</td>
</tr>
<tr>
<td>IL-3$^+$</td>
<td>64.8 ± 4.4 (21)</td>
<td>3.3 ± 0.1 (28)</td>
</tr>
<tr>
<td>IL-3 + MGF</td>
<td>87.4 ± 5.35 (41)</td>
<td>3.6 ± 0.19 (17)</td>
</tr>
</tbody>
</table>

*Each point represents the mean ± the standard error of the mean number of cells per MK colony obtained from two or four separate experiments performed in duplicate. Each culture was initiated with either 5×10^3 CD34$^+$ DR$^-$ cells/mL (BFU-MK) or 5×10^3 CD34$^+$ DR$^+$ cells/mL (CFU-MK).

$^+$200.0 pg GM-CSF/mL; 1.0 ng IL-3/mL, 100.0 ng MGF/mL.

*Each number in the parenthesis indicates the number of individual MK colonies for which the numbers of MKs were enumerated.

$^+$P < .05 when compared with the size of MK colonies cloned in the presence of either GM-CSF or IL-3.
DISCUSSION

MK progenitor cell development has been shown to be a process closely regulated by a number of interacting cytokines. These studies suggest that cytokines such as GM-CSF, IL-1, IL-3, and IL-6 can affect human in vitro megakaryocytopoiesis. The effects of the ligand for the c-kit gene product (MGF), on BFU-MK- and CFU-MK-derived colony formation and long-term megakaryocytopoiesis in vitro, was examined to further define the cytokine requirements of human MK progenitor cells. The MK-CSA of the c-kit ligand alone, as well as its effect on the proliferative capacity of MK progenitor cells promoted by recombinant cytokines such as GM-CSF and IL-3, was analyzed.

Zsebo et al. reported that the administration of the c-kit ligand in pharmacological doses in vivo to S1/S1 mice not only corrected the severe anemia of these animals but led to leukocytosis and thrombocytosis. Several groups have shown that while the c-kit ligand alone has no CSA in vitro, it potentiates the ability of other cytokines to stimulate hematopoietic colony formation. This stimulatory effect occurred whether unfractionated or CD34-enriched human bone marrow cell fractions were used as target cell populations. The effect of the c-kit ligand on thrombopoiesis in S1/S1 mice and its ability to potentiate the effects of other cytokines thus served as a rationale to determine the effects of the c-kit ligand on human MK progenitor cells.

Although the c-kit ligand alone had no MK-CSA, these studies clearly show that it has an effect on human megakaryocytopoiesis. The influences of the c-kit ligand were observed at the level of both the BFU-MK and CFU-MK. This cytokine potentiated the ability of IL-3, but not GM-CSF, to promote BFU-MK-derived colony formation as well as the number of cells composing BFU-MK-derived colonies cloned in the presence of either GM-CSF or IL-3. The c-kit ligand had a more diverse range of effects on the CFU-MK, because it was able to synergistically interact with both GM-CSF and IL-3 by increasing the number and size of CFU-MK-derived colonies assayed. The ability of c-kit ligand to increase the number of cells comprising individual colonies suggests that this cytokine permits CFU-MKs to undergo additional numbers of divisions before they enter a nonmitotic (endomitotic) phase of MK development.

Recently our laboratory has developed an LTBMCA system for human hematopoiesis that is not dependent on the establishment of an adherent cell layer. In this system, the LTBMCS are initiated with subpopulations of bone marrow cells and are then supplemented with individual cytokines or cytokine combinations every 48 hours for the duration of the culture period. We have previously reported that LTBMCS initiated with CD34+ DR- cells and repeatedly supplemented with GM-CSF, IL-1α, or IL-3 are capable of sustaining long-term hematopoiesis in vitro and in this report defined the role of c-kit ligand in long-term megakaryocytopoiesis.

MGF alone had limited ability to sustain long-term megakaryocytopoiesis and did not significantly potentiate the action of GM-CSF in this process. By contrast, MGF in combination with IL-3 more than doubled the cumulative production of CFU-MKs during LTBMCS, suggesting that the c-kit ligand likely acts not only on the BFU-MK or CFU-MK but likely on a pre-BFU-MK present in CD34+ DR- marrow cells.

The cytokine relationships reported both here and in other reports in the literature clearly show that human megakaryocytopoiesis is under the regulation of a network of different cytokines including GM-CSF, IL-1α, IL-3, IL-6, and the c-kit gene product. These cytokines appear to act directly on MK progenitor cells by either stimulating colony formation (GM-CSF, IL-3) and/or by augmenting the action of other cytokines (IL-1α, IL-6, c-kit ligand). However, it is important to emphasize that these studies do not negate the possibility that c-kit ligand may also affect human megakaryocytopoiesis by altering accessory cell functions present within the hematopoietic microenvironment. The potentiation of the action of these other cytokines by the c-kit ligand indicates that several cytokines in combination may be required to achieve maximal MK progenitor cell expansion in vitro.

ACKNOWLEDGMENT

The authors thank Dr Douglas E. Williams of Immunex Corporation for the gift of the murine mast cell growth factor, Stephanie A. McGillem and Deborah A. Navarro for their excellent secretarial assistance in the preparation of this manuscript, and both Dr Edward F. Srou and Brenda Fluhr for their critical review of this manuscript.

REFERENCES

granulocyte colony-stimulating factor, or granulocyte-macrophage factor (c-kit ligand) on colony formation by mouse marrow hemato-
KE: Identification, purification and biological characterization of
LR, Satyagel

cell progeny from CD34+ lin- cells cultured with interleukin-3,
megakaryocyte colony formation in serum-free cultures. Exp Hema-

tol 7:149, 1988
tol 17:1011, 1989

19. Brockmeier HE, Hansog C, Cooper S, Anderson D, Cosman D, Lyman SD, Williams DE: Influence of murine mast cell growth factor (c-kit ligand) on colony formation by mouse marrow hemato-
31. Ebbe S, Phalen E, Stohlman F Jr: Abnormalities of megakary-

47. Broudy VC, Smith FO, Lin N, Zsebo K, Egrie J, Bernstein ID: Recombinant human stem cell factor (rHuSCF) stimulates the growth of hematopoietic colonies from patients with acute nonlymphocytic leukemia (ANLL) by binding to a specific receptor. Blood 76:134a, 1990 (abstr)
Effect of c-kit ligand on in vitro human megakaryocytopoiesis

RA Briddell, E Bruno, RJ Cooper, JE Brandt and R Hoffman

Updated information and services can be found at:
http://www.bloodjournal.org/content/78/11/2854.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml