Establishment of a Human Acute Myeloid Leukemia Cell Line (Kasumi-1) With 8;21 Chromosome Translocation

By Hiroya Asou, Satoshi Tashiro, Kazuko Hamamoto, Akira Otsuji, Kenkichi Kita, and Nanao Kamada

A novel leukemic cell line with an 8;21 chromosome translocation, designated as Kasumi-1, was established from the peripheral blood of a 7-year-old boy suffering from acute myeloid leukemia (AML). The Kasumi-1 cells were positive for myeloperoxidase showing a morphology of myeloid maturation. The response in proliferation assay was observed in the culture with interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage CSF (GM-CSF), but not with IL-1 or IL-5. Neither naphthol AS-D chloroacetate esterase (CAE), and neutrophil alkaline phosphatase (NAP) for morphologic studies and cytochemical reactions.

Surface marker analysis. Cell surface antigens were detected by flow cytometry (Ortho Cytron) at two laboratories (Hiroshima University and Mie University, Japan).

T-lymphocyte colony-stimulating factor (T-LSF), and granulocyte-macrophage CSF (GM-CSF), but not with IL-1 or IL-5. Neither T-cell receptor constant region (TCR-β) or IL-5, respectively. In contrast, induction of macrophagelike cells was seen by the addition of phorbol ester. This is the first report of a human AML cell line with t(8;21) that has characteristics of myeloid and macrophage lineages. The cell line could be a useful tool for elucidating the pathophysiology of AML with t(8;21).

© 1991 by The American Society of Hematology.

TRANSLOCATION (8;21) (q22;q22) is the most common chromosomal aberration with a single structural abnormality found in acute myeloid leukemia (AML). Patients with 8;21 translocation have a unique cell morphology characterized with maturation (French-American-British Classification, FAB M2) and clinical features. 1,2 To understand the characteristics of leukemic cells, human cell lines are useful for the molecular analyses of oncogenes localized in the chromosomal breakpoints4,5,6 and also for the growth and differentiation of the leukemic cells in the presence of hematopoietic growth factors.7

In light of the above material, we report here, for the first time, the establishment of a human AML cell line (Kasumi-1) with an 8;21 chromosome translocation.

CASE HISTORY

The Kasumi-1 cell line was derived from the peripheral blood of a 7-year-old Japanese boy with AML in relapse after bone marrow transplantation. He had been diagnosed as AML FAB M2 at Matsuyama Red Cross Hospital (Matsuyama, Japan) on March 9, 1987. A complete remission was achieved after chemotherapy, but the leukemia relapsed on November 8, 1989. At the second complete remission introduced by mitoxantrone and cytosine arabinoside, he received bone marrow transplantation (BMT) from an HLA-matched sibling on May 12, 1989 at Hiroshima Red Cross Hospital (Hiroshima, Japan). An engraftment was achieved, but relapse occurred on August 18, 1989 (98 days after BMT). Further application of chemotherapy failed. The patient died of progressive disease on January 4, 1990. No tumor formation of leukemic cells outside the marrow cavity was observed during the entire clinical course.

Cell culture. Peripheral blood was collected in a heparinized syringe on November 8, 1989, when the patient's leukocyte count was 99,800/μL with 93% blasts. Buffy coat was separated and leukemic cells were cultured in RPMI-1640 medium (Flow Laboratories, Irvine, Scotland; KA12 8NB) with 20% fetal bovine serum (FBS) (Immunobiological Laboratories, Gunma, Japan; 10814) at 37°C under a humid condition with 7.5% CO₂. The cells were suspended in the medium to give a final cell concentration of 1 x 10⁵ cells/mL. Fifty microliters of this cell suspension was added to each well in a 96-well tissue culture plate (Nunc, Roskilde, Denmark) at 37°C in a fully humid incubator at 5% CO₂ for 7 days. An equal number of the Kasumi-1 cells in IMDM suspended with 20% FBS, 1% methylcellulose, and 1% BSA was treated as a control. The number of colonies consisting of more than 40 cells were counted under the microscope.

From the Department of Hematology, Research Institute for Nuclear Medicine and Biology, Hiroshima University; the Department of Pediatrics, Hiroshima Red Cross A-bomb Hospital, Hiroshima; and the Second Department of Internal Medicine, Faculty of Medicine, Mie University, Tsu, Japan.

Address reprint requests to Nanao Kamada, MD, Department of Hematology, Research Institute for Nuclear Medicine and Biology, Hiroshima University, Kasumi cho, Hiroshima, Japan, 734.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1991 by The American Society of Hematology.

2031
Recombinant human interleukin-1β (IL-1β), IL-3, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and G-CSF were used as stimulating factors at the following concentrations: 100 U/mL of IL-1β, 10 ng/mL of IL-3, 5 ng/mL of IL-6, 10 ng/mL of GM-CSF, and 10 ng/mL of G-CSF. IL-1β and G-CSF were provided by Otsuka Pharmaceutical Co (Tokyo, Japan), and IL-3, IL-6, and GM-CSF were purchased from Genzyme Co (Boston, MA).

3H-thymidine uptake. Cells were suspended in RPMI 1640 medium supplemented with 10% heat-inactivated FBS and adjusted to a concentration of 5×10^6 cells/mL. Fifty microliters of the cell suspension and an equal volume of a growth-stimulating factor in 10% FBS-supplemented RPMI 1640 medium were cultured in 96 U-bottom microwell tissue culture plates (Nunc) at 37°C in a fully humidified incubator at 5% CO₂ for 48 hours. The cells suspended in RPMI 1640 medium without growth-stimulating factor, supplemented with 10% FBS were treated as a control. Then, 50 μL of 2 μCi/mL of 3H-thymidine (Amersham Japan, Tokyo) was added. After 6 hours of incubation, the cells were harvested on glass-fiber filters, and 3H-thymidine uptake was measured in a liquid scintillation counter.

The concentration of human recombinant IL-5 (Suntory Co, Osaka, Japan) was 1 ng/mL. The concentration of the other growth factors was the same as in the colony assay.

Induction of cellular differentiation. Cells were treated with
ESTABLISHMENT OF AML CELL LINE WITH 11(1)(21)

Table 1. Reactivity of Original Leukemia Cells and the Kasumi-I Cell Line With Monoclonal Antibodies

<table>
<thead>
<tr>
<th>CD</th>
<th>MoAb</th>
<th>Original Leukemia Cells</th>
<th>Kasumi-I Cell Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OKT1</td>
<td>7.1</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>OKT3</td>
<td>7.3</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>OKT4A</td>
<td>2.1</td>
<td>37.1, 22*</td>
</tr>
<tr>
<td>5</td>
<td>Leu1</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>7</td>
<td>OKT16</td>
<td>NT</td>
<td>0.7</td>
</tr>
<tr>
<td>8</td>
<td>OKT8</td>
<td>5.6</td>
<td>3.4, 5*</td>
</tr>
<tr>
<td>20</td>
<td>OKT20</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>21</td>
<td>OKB7</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>11</td>
<td>OKB11b</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>14</td>
<td>OKM14</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>13</td>
<td>OKM13</td>
<td>74.8</td>
<td>98.9, 95*</td>
</tr>
<tr>
<td>15</td>
<td>LeuM1</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>33</td>
<td>MY9</td>
<td>NT</td>
<td>86.5, 70</td>
</tr>
<tr>
<td>34</td>
<td>MY10</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>10</td>
<td>OKBCalIa</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>19</td>
<td>OKB19</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>38</td>
<td>OKT10</td>
<td>NT</td>
<td>50.1, 90*</td>
</tr>
<tr>
<td>71</td>
<td>Nu-TERf</td>
<td>NT</td>
<td>NT</td>
</tr>
<tr>
<td>38</td>
<td>OKDR</td>
<td>27.5</td>
<td>89.3, 81*</td>
</tr>
</tbody>
</table>

Abbreviations: MoAb, monoclonal antibody; NT, not tested.

*Tested by other antibodies: CD3 by Leu4, CD4 by Leu3, CD7 by TP40, CD8 by Leu2, CD20 by B1, CD14 by My4, CD13 by MCS2, CD10 by J5, CD19 by Leu12, CD38 by Leu17, HLA-DR by NU-1a.

1.25% dimethyl sulfoxide (DMSO), 10⁻⁷ mol/L phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), 10 ng/mL of G-CSF, or 10 U/mL of mouse IL-5 (Genzyme). After 5 days of culture in RPMI 1640 medium with 20% FBS, DMSO, or TPA at the cell concentration of 2 × 10⁶/mL, cytospin smears were prepared for morphologic observations and were analyzed for MG, MPO, NAP, NBE, and CAE stainings. Morphology of cells cultured with G-CSF or IL-5 was observed on the 7th and the 14th day of culture.

RESULTS

Establishment of Kasumi-I cell line. The Kasumi-I cells have been continuously proliferating in a suspension culture for over 9 months with a doubling time of 40 to 45 hours.

Morphologic and cytochemical characteristics. The cells showed marked variations in both size and nuclear cytoplasmic (N/C) ratio. Granules were present in about 40% of the cells, but no Auer rods were seen. Some cells had vacuoles in the cytoplasm. The nuclei are often lobulated, showing a lepto-chromatid pattern. One to five nucleoli were found per cell. The basophilic cytoplasm contained fine azurophilic granules. Some cells had the characteristics of myelocytes, representing maturation of blast cells (Fig 1A).

The original leukemic cells and the Kasumi-1 cell line were positive for MPO (Fig 1B) and CAE. The Kasumi-I cells were negative for NAP and NBE.

Surface marker analysis. Both the original leukemic cells and the Kasumi-I cell line were positive for CD13 (OKM13) and HLA-DR (OKDR). However, the Kasumi-I cell line was 37.1% positive for CD4 (OKT4A) and 50.1% for CD38 (OKT10) (Table 1). CD4 coexpressed with CD34, CD33, and CD13 in the Kasumi-I cells was determined by double immunofluorescence. Further investigation at Mic Univers-

Table 2. Chromosome Analysis of Original Leukemia Cells and the Kasumi-I Cell Line

<table>
<thead>
<tr>
<th>Karyotype</th>
<th>Leukemic cells on set</th>
<th>45,X,−Y,t(8;21)(q22;q22)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(March 9, 1987)</td>
<td></td>
</tr>
<tr>
<td>Leukemic cells on 2nd relapse</td>
<td>44,X,−Y,−16,t(8;21)(q22;q22)</td>
<td>7</td>
</tr>
<tr>
<td>(August 18, 1989)</td>
<td>43,X,−Y,−9,−13,−15,−16,t(8;21)(q22; q22),+der(9)t(9;?)q(11;?), +mar</td>
<td>3</td>
</tr>
<tr>
<td>46,XY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kasumi-1 cell line (April 3, 1990)</td>
<td>44,X,−Y,−9,−13,−15,−16,t(8;21)(q22; q22),+der(9)t(9;?)q(11;?), +mar1,+mar2</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>46,X,−Y,−9,−13,−15,−16,t(8;21)(q22; q22),+der(9)t(9;?)q(11;?), +mar1,+mar2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>46,X,−Y,−9,−13,−15,−16,t(8;21)(q22; q22),+der(9)t(9;?)q(11;?), +mar1,+mar2</td>
<td>4</td>
</tr>
</tbody>
</table>
University showed that the Kasumi-1 cell line was positive for CD15 (LeuM1), CD34 (MY10), and CD71 (Nu-TERf).

Cytogenetic studies. Cytogenetic data are shown in Table 2. Chromosomal analysis of the leukemic cells in the second relapse showed t(8;21), der(9)(q22;?q22), and a marker chromosome. The additional chromosomal abnormality found in the Kasumi-1 cell line was a minute marker chromosome designed as mar2 (Fig 2).

Southern blot hybridization. Southern blot hybridization showed no bands specific for Epstein-Barr virus and no rearrangement bands with IgJH and TCRβ probes.

Proliferation studies by recombinant hematopoietic growth factors. To assess the effects of cytokines on Kasumi-1 cells, colony assay and 3H-thymidine uptake were studied. In the colony assay, increase in the number of colony formation was observed in the culture with G-CSF, IL-3, or IL-6 in the order of the activity, respectively, but not with IL-1 or GM-CSF (Table 3).

The increase of 3H-thymidine uptake was observed in the culture with G-CSF, GM-CSF, IL-3, or IL-6 in the order of the activity, respectively, but not with IL-1β or IL-5 (Table 4).

Induction of cellular differentiation. DMSO and G-CSF did not induce granulocytic maturation. IL-5 alone was not able to induce eosinophilic differentiation. In contrast, TPA induced the formation of macrophagelike cells that had the ability of adhesion to the wall of the culture bottle and showed about 10% positivity for NBE staining (Fig 1, C and D). After the culture with TPA, changes in the surface markers were observed; expression of CD4 completely disappeared (15.4% was positive before culture) and CD11b (Leu15) newly appeared in 11.4% of the Kasumi-1 cells. NAP activity was never positive after the culture with these inducers.

DISCUSSION

It has been well established that AML with t(8;21) has some specific clinical features, such as (1) generally younger patients, (2) a frequency of 10% to 40% of FAB M2 leukemias; (3) good response to chemotherapy with a high remission rate and a relatively long survival; (4) the presence of Auer rods in both the blast cells and mature granulocytes; (5) abnormal maturation of the leukemic cells, eg, scant or eccentric localization of the granules; (6) low activity of neutrophil alkaline phosphatase; (7) eosinophilia in the bone marrow in some cases; and (8) occurrence of solid tumor with myeloblastoma features outside the bone marrow cavity.

The Kasumi-1 cell line is a novel human cell line derived from a patient with AML with an 8;21 translocation, which is positive for MPO and has the morphology of myeloid maturation. In surface-marker analysis, the Kasumi-1 cells were positive for CD13, CD15, CD33, CD34, HLA-DR, CD38, CD71, and CD4. It has been reported that CD34 is expressed in pluripotent stem cells, CD33 in colony-forming unit granulocyte/erythroid/macrophage/megakaryocyte (CFU-GEMM), and CD13 in colony-forming unit granulocyte/macrophage (CFU-GM). This evidence strongly suggests that the Kasumi-1 cell line has originated from an early myeloid stem cell. The Kasumi-1 cells could proliferate well in the presence of G-CSF, GM-CSF, IL-3,
or IL-6. The highest increases in colony formation and \(^{3}H\)-thymidine uptake were observed by G-CSF. G-CSF acts on lineage-restricted stem cells, mainly on the granulocyte series.\(^{20}\) Our results indicate the Kasumi-1 cell line is committed to the granulocytic series. On the other hand, this cell line showed a response to IL-3 that acts on multipotential stem cells.\(^{21}\)

From these results, we can speculate that this cell line keeps the characteristics of a multipotential stem cell with a differentiation ability to granulocytic series.

Regarding responsiveness to IL-6, there are several reports that IL-6 exerts proliferative effects on multipotential stem cells or blast cells of AML in combination with IL-3 or GM-CSF.\(^{21,22}\) It still remains a possibility that IL-6 acts on the Kasumi-1 cells synergistically with some growth factor(s) present in FBS for proliferation ability. Synergistic effects of these growth factors on the Kasumi-1 cells are under investigation.

In the present study, IL-5 alone did not induce the Kasumi-1 cells into eosinophils. This fact is not in concordance with the experiment of Ema et al.\(^{13}\) Further studies are necessary for the final conclusion of the differentiation ability of the Kasumi-1 cells into eosinophils in the presence of IL-5 in combination with other growth factor(s).

The Kasumi-1 cells differentiate into macrophagelike cells when cultured with TPA. It has been reported that most of the myelocytic leukemic cells differentiated into macrophagelike cells in vitro culture with TPA.\(^{24,25}\) This fact indicates that myelocytic leukemia involves the stem cells that can differentiate into both granulocytic and macrophagelike cells. The Kasumi-1 cell line also seems to be originated from such a progenitor cell.

Of the 148 reported cases, two were diagnosed as M4 (FAB classification).\(^{26}\) Although those cases with M4 are very rare, our study indicated that some AML cases with t(8;21) could be diagnosed as M4 if leukemic cells differentiate into macrophages in vivo. It would be necessary to identify the biologic factor(s) that is responsible for the promotion of differentiation of leukemic cells of AML with t(8;21) to macrophagelike cells.

Tumor formation (histologically myeloblastoma) outside the bone marrow has been reported in AML with t(8;21).\(^{4}\) In the present study, 10% to 20% of the cells adhered to the wall of the culture bottles and some cells gathered around the adherent cells and formed aggregations. This phenomenon might be associated with the tumor formation in AML with t(8;21). In addition, surface marker CD4 disappeared and CD11b newly appeared after the culture with TPA. This phenomenon is in concordance with the evidence observed in the U937 cell line.\(^{27}\) It is possible that CD4 positive cells might have been converted into CD11b positive macrophagelike cells. If the tumor formation relates to the macrophage differentiation, CD4 would be an important marker to predict the formation of myeloblastoma in AML with t(8;21).

Kamada et al.\(^{7}\) reported the lack of neutrophil alkaline phosphatase recovery of AML with t(8;21) in vitro culture, suggesting genetic alteration of alkaline phosphatase-related genes. Detailed research on NAP activity will be conducted in the future.

The Kasumi-1 cell line has the monosomy of chromosome 13. The Rb (retinoblastoma) antioncogene is located on 13q14. The possibility of structural rearrangement of this antioncogene also should be studied in the Kasumi-1 cell line.

In conclusion, the previously described investigation shows that the cell lines with specific chromosome abnormalities provide important material for the study of biologic mechanisms involved in neoplasia. This cell line would be a useful tool for biologic research of t(8;21).

REFERENCES

Table 4. \(^{3}H\)-Thymidine Uptake of the Kasumi-1 Cells With Recombinant Hematopoietic Growth Factors

<table>
<thead>
<tr>
<th>Growth Factors</th>
<th>IL-1α</th>
<th>IL-3</th>
<th>IL-5</th>
<th>IL-6</th>
<th>G-CSF</th>
<th>GM-CSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpm</td>
<td>8,547 ± 840</td>
<td>5,301 ± 601</td>
<td>14,730 ± 1,463</td>
<td>7,800 ± 906</td>
<td>11,290 ± 911</td>
<td>22,260 ± 2,723</td>
</tr>
</tbody>
</table>

From www.bloodjournal.org by guest on August 16, 2017. For personal use only.

Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation

H Asou, S Tashiro, K Hamamoto, A Otsuji, K Kita and N Kamada

Updated information and services can be found at:
http://www.bloodjournal.org/content/77/9/2031.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml