A Molecular Genetic Study of Factor XI Deficiency

By John F. Hancock, Kerstin Wieland, Roy E. Pugh, Uri Martinowitz, Sam Schulman, Vijay V. Kakkar, Peter B.A. Kernoff, and David N. Cooper

Factor XI deficiency is a rare bleeding diathesis found predominantly in Ashkenazi Jewish kindreds. A recent study of six Jewish patients identified three distinct mutations (Types I, II, and III) in the factor XI gene that were sufficient to fully define the genotypes of the patients. We have investigated 63 patients with factor XI deficiency and find overall allele frequencies of 44% for the type II mutation, 31% for the type III mutation, and 0% for the type I mutation. Therefore, 25% of the mutant factor XI alleles in our sample remain undefined. However, the distribution of mutant alleles is significantly different between Jewish and non-Jewish populations with hitherto undefined mutations accounting for 84% of the disease alleles in non-Jewish patients. Plasma factor XI:C levels were found to differ significantly between different homozygous and compound heterozygous genotypes and the inheritance of the II/III genotype was found to carry an increased risk of the most severe bleeding tendency.

© 1991 by The American Society of Hematology.

Factor XI is a serine protease zymogen that links the contact phase of blood coagulation with the intrinsic pathway via the activation of factor IX. Factor XI, a 160-Kd glycoprotein, circulates as a homodimer that is cleaved by factor XIIa between Arg369 and Ile370 in each monomer to generate factor Xla. The activated protease thus comprises two N-terminal heavy chains and two C-terminal light chains that are held together by disulphide bonds. In vitro, the activation of factor XI requires high molecular weight kininogen (HMWK) and a negatively charged surface. Factor Xla remains bound to the surface through the binding of HMWK to a site (Phe56 → Ser86) in the factor Xla heavy chain. The sequence of a factor XI cDNA cloned from human liver predicts that the protein is synthesized with an 18 amino acid N-terminal leader sequence. The catalytic triad of the protease active site is located in each of the two C-terminal light chains of the protein. The human factor XI gene spans 23 kb, comprises 15 exons, and is located on chromosome 4q35.

A recent study by Asakai et al. identified three distinct factor XI gene mutations in six Ashkenazi Jewish patients homozygous for factor XI deficiency. A point mutation in the 5’ splice donor site (GT → AT) of the last intron, found in one of 12 alleles, probably results in aberrant mRNA processing. A second point mutation, introducing a novel termination codon into exon 5 (Glu117 → Ter), accounted for 5 of 12 mutant alleles. Finally, a third point mutation in exon 9, resulting in the amino acid substitution Phe283 → Leu, was found in six of 12 alleles. This amino acid change occurs at a site that is conserved between factor XI and human plasma prekallikrein. These three mutations, called type I, II, and III, respectively, therefore fully defined the genotypes of the six patients examined. However, it should be noted that a causative role for the type III mutation has not yet been formally established by in vitro expression studies. While no correlation between genotype and clinical phenotype was found, the number of patients studied was too small for this observation to be conclusive.

We have investigated a large number of patients with factor XI deficiency, both Jewish and non-Jewish, to address three specific questions. First, do the previously described mutations account for all cases of factor XI deficiency? Second, is there any evidence of a correlation between genotype and clinical phenotype among a larger group of patients? Third, do the documented mutations described in Ashkenazi Jews also occur in non-Jewish

From www.bloodjournal.org by guest on November 11, 2017. For personal use only.
kindreds, and if so, are the frequencies of the mutant alleles similar in both populations?

MATERIALS AND METHODS

Patients

Patients attending the Royal Free Hospital, London, UK, formed the major group for this study. Factor XI levels and detailed clinical histories were available from a previous study of inheritance and bleeding in factor XI deficiency. Additional patients from Israel, Sweden, and other UK centers were also included; factor XI:C levels and clinical histories of these patients were provided by their attending physician.

Analysis of Mutant Alleles

High molecular weight genomic DNA was extracted from peripheral blood leukocytes. DNA (200 ng) was used in a polymerase chain reaction (PCR) of 40 cycles with 100 pmol of each oligonucleotide primer following the method of Saiki et al. The primers for the type I analysis were 5'-AGTGACCAACGAGA-GAGTGCCA (5' end of exon 14) and 5'-TTGCAATATTTCCAT-TGGCTAAGA (5' end of intron N), annealing at 55°C; the primers for the type II analysis were 5'-GAATCTGGAAGGTACTCATGTC (3' end of intron G) and 5'-ACAGTCTTGATTGTGATGTAT-TCATGTC (3' end of intron D) and 5'-ATCGACCACTCGAATT-GTCCTG (5' end of intron E), annealing at 60°C; the primers for the type III analysis were 5'-ACTTTACTTTCTCTAGGTGCTGT and 5'-GAATCTGGAAGGTAC-T mutation destroys a Bsm I site in the middle of the primer (Fig 1). A wild-type PCR product is, therefore, cut into two fragments of 99 bp and 33 bp while a mutant product remains uncut (Fig 1). To detect type II mutations, exon 5 was amplified by PCR, giving a product of 223 bp. The type II G → T mutation destroys a Bsm I site in the middle of exon 5. Thus, a wild-type product is cut into two fragments of 113 bp and 110 bp following Bsm I digestion, whereas a mutant product remains uncut (Fig 2).

Molecular Genetic Analysis

All patients were tested for the presence of the three mutations described by Asakai et al. For detection of the type I mutation, exon 14 plus the 5' region of the following intron (intron N) was amplified by PCR and the 132-bp product digested with Bsm I. The 28 homozygous patients (0% to 20% FXI:C), 16 were unrelated sporadic cases and 12 were drawn from seven unrelated kindreds. The 35 heterozygotes (25% to 70% FXI:C) comprised six unrelated sporadic cases and 29 cases drawn from 11 unrelated kindreds. Thus, a total of 22 unrelated patients and 41 patients from 13 unrelated kindreds were included in the study. The pedigrees of each of these 13 kindreds are presented in the Appendix.

The clinical histories of 61 patients were assessed from available case notes by two physicians and the bleeding symptoms classified into one of three groups:

None/trivial. No bleeding despite hemostatic challenge as a result of surgery, dental extraction, or trauma; or, very occasional trivial bleeding episodes not requiring clinical intervention.

Moderate. Recurrent bleeding in response to hemostatic challenges requiring specific treatment and/or blood transfusion; or one or more episodes of spontaneous hemorrhage.

Table 1 shows that there is no significant difference in the factor XI:C level among homozygotes in each of these groups or between heterozygotes with mild or no bleeding. Therefore, these data are consistent with previous studies in showing, first, that there is a poor correlation between plasma factor XI:C level and bleeding tendency and, second, that a substantial proportion of heterozygotes bleed excessively. In addition, it is apparent from the pedigrees given in the Appendix that the bleeding tendency within these families is variable.

Statistical Analysis

Analysis of variance and F-tests were used to test the null hypothesis of equality of multiple (more than two) means, t-tests used to test for equality of two means, and χ² tests used to compare observed with predicted population frequencies. The analyses were performed according to established methods. Abbreviations used in reporting these tests are: SEM, standard error of the mean; DF, degrees of freedom.

RESULTS

Patient Pedigrees

Patients were designated homozygous or heterozygous deficient according to their plasma factor XI:C levels. Of the 28 homozygous patients (0% to 20% FXI:C), 16 were unrelated sporadic cases and 12 were drawn from seven unrelated kindreds. The 35 heterozygotes (25% to 70% FXI:C) comprised six unrelated sporadic cases and 29 cases drawn from 11 unrelated kindreds. Thus, a total of 22 unrelated patients and 41 patients from 13 unrelated kindreds were included in the study. The pedigrees of each of these 13 kindreds are presented in the Appendix.

From www.bloodjournal.org by guest on November 11, 2017. For personal use only.
A Type I Mutation

Maellll

EXON 14

GAATC

pcd

pcu

PCR product

Normal

1 bp 99 bp 33 bp

Mutant

1 bp 132 bp

Fig 1. Type I analysis. (A) The PCR product obtained using the 5' (pcu) and 3' (pcd) primers described in Materials and Methods. The type I, G → A point mutation is indicated and a Maelll restriction map given for a wild-type and mutant PCR product. (B) An agarose gel analysis of four patients. We found no examples of the type I mutation and so all the patients shown have a wild-type restriction pattern. Lanes have been loaded in pairs with an uncut PCR product (odd lanes) run alongside a digested PCR product (even lanes). The position of a 100-bp marker is indicated alongside the gel. The fastest migrating band in each lane comprises excess oligonucleotide primers (21 bp and 24 bp) that obscure the 33-bp fragment released from the digested PCR product.

PCR product of 706 bp and digested with Sau3AI. In the wild-type product, a single Sau3AI site in exon 10 gives two fragments of 578 bp and 128 bp, but the presence of the T → C mutation in exon 9 creates a new Sau3AI site resulting in three fragments of 328 bp, 251 bp, and 128 bp (Fig 3). Figures 1, 2, and 3 illustrate these analyses, which follow a similar strategy to that devised by Asakai et al.13

The restriction analysis was validated by direct sequencing of certain PCR products. For example, in every case where the restriction analysis failed to identify a known mutation, sequencing of all three PCR products from that patient was performed to confirm that one of the previously defined mutations had not been missed. In addition, a random 10% of PCR products that scored positive for type II or type III mutations on restriction analysis were also sequenced to confirm the presence of the predicted point mutations. In no case was any discrepancy found between the restriction and sequencing analyses.

Table 2 shows that of the 91 mutant alleles expected in this group of patients, 37 had a type II mutation and 31 had a type III mutation. No example of a type I mutation was found. Therefore, 23 mutant factor XI alleles (25%) in our sample did not contain one of the previously described mutations. Among the non-Jewish patients, only two of the 19 expected mutant alleles contained a defined mutation, indicating that the majority of mutant factor XI alleles in this group were other than the three previously described.

B 1 2 3 4 5 6 7 8

-100

Fig 2. Type II analysis. (A) The PCR product obtained using the 5' (pcu) and 3' (pcd) primers described in Materials and Methods. The type II, G → T point mutation is indicated and a BsmI restriction map given for a wild-type and mutant PCR product. (B) An agarose gel analysis of six patients. Examples are shown of two patients homozygous for the type II mutation (lanes 1 through 4), two patients heterozygous for the type II mutation (lanes 5 through 8), and two normal patients (lanes 9 through 12). Lanes have been loaded in pairs for each patient, with an uncut PCR product (odd lanes) run alongside a digested PCR product (even lanes). The positions of 100-bp and 250-bp markers are indicated alongside the gel.
MOLECULAR GENETICS OF FACTOR XI DEFICIENCY

A

Type III Mutation

\[
\begin{align*}
\text{Sau3A1} & : \text{C} \\
\text{puc} & \uparrow \text{GAAT} \\
\text{pcd} & \text{pcr product}
\end{align*}
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{Exon} & \text{Normal} \text{bp} & \text{Mutant} \text{bp} \\
\hline
\text{8} & 578 & 328 \\
\text{9} & 128 & 251 \\
\text{10} & 128 & 128 \\
\hline
\end{array}
\]

Fig 3. Type III analysis. (A) The PCR product obtained using the 5’ (puc) and 3’ (pcd) primers described in Materials and Methods. The type III, \(T \rightarrow C \) point mutation is indicated and a Sau3A1 restriction map given for a wild-type and mutant PCR product. (B) An agarose gel analysis of three patients. One patient has a wild-type pattern (lanes 1 and 2), one is homozygous for the type III mutation (lanes 3 and 4), and one is heterozygous for the type III mutation (lanes 5 and 6). In each case an undigested aliquot of the PCR reaction (odd lanes) has been loaded alongside an aliquot digested with Sau3A1 (even lanes). The positions of 100-bp, 250-bp, and 600-bp markers are indicated alongside the gel.

B

To obtain an unbiased estimate of these allele frequencies, the genotypes of all unrelated sporadic cases and the index case of each family group were analyzed. In two kindreds (groups 6 and 10), a mutation not present in the index case was identified in another family member. These two alleles were also included in the analysis. Of the 62 evaluable alleles analyzed in this manner, 16 (25.9%) contained undefined mutations (Table 3). Among the remainder, type II mutations were slightly more common than type III mutations. The analysis presented in Table 3 also shows that the distribution of mutations is significantly different between Jewish and non-Jewish populations (\(\chi^2 = 61.98; P < .001 \)). In the latter, 84% alleles contained undefined mutations compared with 12% among Jewish patients.

Correlation of Genotype and Phenotype

We then investigated whether the measured plasma factor XI:C level correlated with factor XI genotype (Table 4). We found that the mean factor XI:C levels associated with the homozygous and compound heterozygous genotypes differed significantly (\(F = 4.69; P < .01 \)). The statistical analysis was therefore taken further with those genotypes containing defined mutations (ie, II/III, 11/11, and III/III). The differences between mean plasma factor XI levels in this subset of genotypes were highly significant (\(F = 11.12; P < .005 \)). The plasma factor XI:C levels associated with a II/II genotype were very low (range 0 U/dL to 1.5 U/dL, mean 0.62 U/dL), whereas those associated with the III/III genotype were the highest of this subset (range 3

Table 2. Factor XI Gene Mutations

<table>
<thead>
<tr>
<th>Type of Mutation</th>
<th>Ethnic Group</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>UNO</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>0</td>
<td>37</td>
<td>31</td>
<td>23</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>Jewish</td>
<td>0</td>
<td>36</td>
<td>30</td>
<td>6</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Non-Jewish</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Summary of the factor XI gene mutations found in 28 homozygous and 35 heterozygous patients. The total number of expected mutations is therefore 91. Type I, II, and III mutations are those described previously by Asakai et al and are detailed in the text. Mutant alleles that were found not to contain any one of these three mutations are designated undefined (UND).

Table 3. Estimation of Mutant Factor XI Allele Frequencies

<table>
<thead>
<tr>
<th>Type of Mutation</th>
<th>Patients</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>UND</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>All sporadic cases</td>
<td>0</td>
<td>19</td>
<td>12</td>
<td>7</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>All index cases</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>All cases</td>
<td>0</td>
<td>27</td>
<td>19</td>
<td>16</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>Allele frequency (%)</td>
<td>43.5</td>
<td>30.6</td>
<td>25.9</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Jewish patients:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>0</td>
<td>26</td>
<td>18</td>
<td>6</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Allele frequency (%)</td>
<td>52</td>
<td>36</td>
<td>12</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Non-Jewish patients:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>Allele frequency (%)</td>
<td>8</td>
<td>8</td>
<td>84</td>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

To obtain an estimate of gene frequencies, the mutations occurring in all sporadic cases plus the index cases of each family were analyzed. The upper part of the table gives the numbers of evaluable alleles and overall gene frequencies. The lower part of the table divides patients into Jewish and non-Jewish groups and gives gene frequencies for each group. The observed non-Jewish allele frequencies are significantly different from those expected for the alleles analyzed (\(\chi^2 = 61.98, \text{DF} = 1; P < .001 \)). The Jewish allele frequencies were used to calculate the expected frequencies.
types (F = 4.69, DF = 5.22; P < .01) but not between the different heterozygous genotypes (F = 0.33, DF = 2.32; P > .05). The mean plasma factor XI:C levels in patients with homozygous and compound heterozygous genotypes containing defined mutations (I/II, I/III, and II/III) were analyzed further. The differences between the mean factor XI:C levels in this subset of genotypes were highly significant (F = 11.12, DF = 2.18; P < .005).

Abbreviation: WT, wild type.

U/dL to 20 U/dL, mean 11 U/dL). The II/III genotype-associated factor XI:C levels were intermediate (range 0 U/dL to 6 U/dL, mean 2.87 U/dL) (Table 4). There was no significant difference in plasma factor XI levels among the three heterozygote genotypes (Table 4).

We next attempted to determine whether there was any correlation between the genotypes we had established for each patient and the clinical severity of their factor XI deficiency. Table 5 shows the distribution of clinical phenotypes for each homozygous and heterozygous genotype. It is clear that among heterozygotes no one particular mutation carries an increased likelihood of increased bleeding. However, the analysis presented in Table 5 does show that, among homozygous and compound heterozygous patients, the inheritance of a II/III genotype carries a greater risk of a moderate bleeding tendency than any other genotype (χ² = 27.45; P < .001).

DISCUSSION

This study sought to determine the incidence of three previously identified factor XI gene mutations in a large group of factor XI-deficient patients and to investigate whether the factor XI genotype correlated with the clinical severity of the bleeding diathesis. Three main conclusions can be drawn from the data presented here.

First, a significant proportion (25%) of the mutant alleles causing factor XI deficiency in our patient sample remain to be identified. It is interesting that none of our patients possessed the type I (splice donor) mutation described by Asakai et al. These investigators identified the mutation in only one of 12 alleles studied. One interpretation of these observations is that whereas the type II (premature termination) and type III (amino acid substitution) factor XI gene mutations clearly predominate in Jewish populations, a number of individually uncommon mutations (eg, type I) account for the remaining 25% of disease alleles found mainly in non-Jews. We are currently sequencing the factor XI genes of patients with undefined mutations to address this hypothesis. It is also possible that one or more of these undefined mutations may be non-allelic, ie, they occur at other loci whose gene products are required for normal expression of the factor XI gene.

Second, as mentioned above, the frequencies of the two common factor XI gene mutations differ significantly between Jewish and non-Jewish patients. Indeed, the majority (84%) of the disease alleles in non-Jews remain undefined. These differences are probably not surprising in view of the early finding that non-Jewish homozygotes and heterozygotes possessed lower plasma factor XI levels than their Jewish counterparts. The high incidence of factor XI deficiency among Ashkenazi Jews was initially attributed to a founder effect. The results of our study are in part consistent with this hypothesis in that two distinct mutations account for 88% of all factor XI gene defects in this ethnic group. Our observation that these same mutations exist, rather than just a single mutation. The high frequency of factor XI deficiency among Ashkenazi Jews due to a minimum of four distinct mutations is nevertheless intriguing. Some selective advantage may well have accrued to heterozygous carriers of the mutant alleles to account for their high frequency in this ethnic group.

Third, the comparative analysis of phenotype and genotype presented here suggests that patients with a II/III genotype are significantly more likely to experience moderate bleeding than patients with other genotypes. Of the patients with a II/III genotype, approximately 50% had a moderate bleeding tendency and 50% had a mild clinical picture. Indeed, six of seven of the patients who had a moderate bleeding tendency possessed this genotype. This result indicates that a knowledge of a factor XI-deficient patient's genotype may be of some use in predicting the

Table 4. Comparison of Plasma Factor XI:C Levels With Genotype

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Frequency (n)</th>
<th>Range</th>
<th>Mean ± SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>II/II</td>
<td>13</td>
<td>0-6</td>
<td>2.87 ± 0.49</td>
</tr>
<tr>
<td>II/III</td>
<td>3</td>
<td>3-20</td>
<td>11.0 ± 4.9</td>
</tr>
<tr>
<td>II/II</td>
<td>5</td>
<td>0-1.5</td>
<td>0.62 ± 0.29</td>
</tr>
<tr>
<td>UND/UND</td>
<td>4</td>
<td>1-3</td>
<td>1.75 ± 0.42</td>
</tr>
<tr>
<td>III/UND</td>
<td>2</td>
<td>1.6-10</td>
<td>5.8 ± 4.2</td>
</tr>
<tr>
<td>II/UND</td>
<td>1</td>
<td>3-3</td>
<td>3.0</td>
</tr>
<tr>
<td>II/WT</td>
<td>13</td>
<td>34-65</td>
<td>52.5 ± 3.2</td>
</tr>
<tr>
<td>II/WT</td>
<td>10</td>
<td>30-70</td>
<td>52.7 ± 4.3</td>
</tr>
<tr>
<td>UND/WT</td>
<td>12</td>
<td>31-68</td>
<td>48.4 ± 5.2</td>
</tr>
</tbody>
</table>

A summary of the plasma factor XI:C levels found in patients with specific genotypes. Mean plasma factor XI:C levels differ significantly between the different homozygous and compound heterozygous genotypes (F = 4.69, DF = 5.22; P < .01) but not between the different heterozygous genotypes (F = 0.33, DF = 2.32; P > .05). The mean plasma factor XI:C levels in patients with homozygous and compound heterozygous genotypes containing defined mutations (I/II, I/III, and II/III) were analyzed further. The differences between the mean factor XI:C levels in this subset of genotypes were highly significant (F = 11.12, DF = 2.18; P < .005).

Table 5. Comparison of Factor XI Genotype With Clinical Phenotype

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Unknown</th>
<th>None</th>
<th>Mild</th>
<th>Moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>II/II</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>II/III</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>II/II</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>UND/UND</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>III/UND</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>II/UND</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>II/WT</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>II/WT</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>UND/WT</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

The genotype of all 63 patients in this study was compared with the clinical assessment of the severity of their bleeding tendency. Clinical histories were not available on two patients. The upper part of the table lists homozygous and compound heterozygous genotypes and the lower part of the table lists heterozygous genotypes. The observed distribution of clinical phenotypes in patients with the II/II genotype differs significantly from that expected from the distribution of phenotypes among patients with all the other homozygous and compound heterozygous genotypes (χ² = 27.45, DF = 1; P < .001).
Fig 4. Eleven patient pedigrees. The plasma factor XI:C level is recorded in the patients' box or circle. Underneath each patient, in parentheses, is given their genotype followed, after a comma, by their bleeding phenotype according to the key given below. For example, (II 111.2) indicates a double heterozygote II/III genotype with a moderate bleeding diathesis. If a single mutation is recorded, the patient is a heterozygote. All kindreds are Jewish except for groups 9 and 11, which are non-Jewish. U, undefined mutation; 0, none/trivial bleeding; 1, mild bleeding tendency; 2, moderate bleeding tendency; -, data not available.
likely outcome to an elective hemostatic challenge. Our
data also show that there is an association between plasma
donor XI:C levels and a patient's genotype. In other words,
the mean factor XI:C levels associated with individual
homozygous and compound heterozygous genotypes differ
significantly. We speculate that, for the three genotypes
containing only defined mutations, the associated factor
XI:C levels may be rationalized as follows. Dimers of a
completely truncated factor XI molecule lack the catalytic
site and are probably also unstable. This inactivity and
instability would be reflected in the very low factor XI levels
associated with the II/II genotype. Conversely, the missense
mutation associated with the III mutation would not be
expected to alter the stability of the protein because a bulky
hydrophobic residue is merely replaced by a smaller aliphatic
amino acid. In this case, stable dimers of a III/III
molecule (Phe 56-Ser 86) would be present. The greater
phenotypic severity associated with the II/III genotype
might, therefore, be explained by a combination of HMWK
deficiency, due to sequestration by inactive II/III molecules,
and a reduced production (relative to the III/III genotype)
of the weakly active II/III homodimer.

APPENDIX

Eleven patient pedigrees are listed (Fig 4).

ACKNOWLEDGMENT

We thank Angus McCraw for preparing DNA from the Royal
Free patients, Dr Sabri Kemahli for help in compiling certain of
the clinical data, and Dr Atul Mehta for helpful advice. We also
acknowledge Drs B.T. Colvin, R. Vaughan Jones, G.L. Scott, A.
Copplestone, B. Zoll, and P.H.B. Bolton-Maggs, who kindly con-
tributed patient material for inclusion in this study.

REFERENCES

1. Seligsohn U: High gene frequency of factor XI (PTA)
2. Saito H: Contact factors in health and disease. Semin Thromb
Hemost 13:36, 1987
3. Rosenthal RL, Dreskin OH, Rosenthal N: Plasma thrombo-
plastin antecedent (PTA) deficiency; clinical, coagulation, therapeu-
tic and hereditary aspects of a new hemophilia-like disease. Blood
10:120, 1955
4. Bolton-Maggs PHB, Wan-Yin BY, McCraw AH, Slack J,
Kernoff PBA: Inheritance and bleeding in factor XI deficiency. Br
J Haematol 69:521, 1988
5. Todd M, Wright IS: Factor XI (PTA) deficiency with no
6. Edson JR, White MD, Krivit MD: The enigma of severe
factor XI deficiency without hemorrhagic symptoms. Thromb
Diath Haemorrh 18:342, 1967
PN: Comparison of bleeding tendency, factor XI coagulant activity
and factor XI antigen in 25 factor XI deficient kindreds. Blood
65:719, 1985
8. Litz CE, Swain WR, Dalmasso AP: Factor XI deficiency;
genetic and clinical studies of a single kindred. Am J Hematol 28:8,
1988
9. Lewis JH, Spero JA, Ragni MV, Bontempo FA: Transfusion
for non-haemophilia clotting deficiencies. Clin Haematol 13:119,
1984
10. Bagliu FA, Jameson BA, Walsh PN: Localization of the high
molecular weight kinogen binding site in the heavy chain of
human factor XI to amino acids phenylalanine 56 through serine
11. Fujikawa K, Chung DW, Hendrickson LE, Davie EW: Amino acid sequence of human factor XI, a blood coagulation
factor with four tandem repeats that are highly homologous with
12. Van der Graaf F, Greengard JS, Bouma BN, Kerisius DM,
Griffin JH: Isolation and functional characterisation of the active
light chain of activated human blood coagulation factor XI. J Biol
Chem 258:9669, 1983
for human factor XI. Biochemistry 26:7221, 1987
is located on the distal end of the long arm of human chromosome
15. Asakai R, Chung DW, Ratnoff OD, Davie EW: Factor XI
(plasma thromboplastin antecedent) deficiency in Ashkenazi Jews
is a bleeding disorder that can result from three types of point
mutations. Proc Natl Acad Sci USA 86:7667, 1989
RT, Mullis KB, Erlich HA: Primer-directed enzymatic amplification
17. Green PM, Bentley DR, Milbahan RS, Nilsson JM, Gi-
nanneli F: Molecular pathology of haemophilia B. EMBIO J 8:1067,
1989
Ames, IA, Iowa State University, 1980
19. Saito H, Ratnoff OD, Bouma BN, Seligsohn U: Failure to
detect variant (CRM-) plasma thromboplastin antecedent defici-
cy factor XI) molecules in hereditary plasma antecedent
deficiency; A study of 125 patients of several ethnic backgrounds. J
Lab Clin Med 106:718, 1985
20. Rotter JI, Diamond JM: What maintains the frequency of
A molecular genetic study of factor XI deficiency

JF Hancock, K Wieland, RE Pugh, U Martinowitz, S Schulman, VV Kakkar, PB Kernoff and DN Cooper