Abnormal Megakaryocytopoiesis in the Belgrade Laboratory Rat

By Zoran Rolović, Nadežda Basara, Nevenka Stojanović, Nada Suvajdić, and Vera Pavlović-Kentera

The Belgrade laboratory (b/b) rat has a hereditary hypochromic microcytic anemia because of defective transmembrane iron transport into erythroblasts. The present study was prompted by our previous work in which we showed that the b/b rat has hypomegakaryocytic thrombocytopenia associated with increased megakaryocyte size. To define the basic mechanism underlying this abnormality in the b/b rat we have studied both megakaryocytopoiesis and granulopoiesis in anemic b/b rats, chronically transfused b/b rats, iron-treated b/b rats, and controls. We have found decreased concentrations of megakaryocyte and granulocyte progenitors in the marrow of b/b rats. Full correction of the severe anemia by chronic transfusion resulted in normalization of megakaryocyte progenitors, small acetylcholinesterase-positive cells, megakaryocyte size, and platelet counts, along with granulocyte progenitors. In contrast, the partial correction of anemia obtained by iron treatment resulted in improvement, but not normalization, of these parameters. These findings indicate that abnormal megakaryocytopoiesis in the b/b rat can be best interpreted as a consequence of hypoxia because of the severe anemia. Because we have recently shown that the number of erythroid progenitors in b/b rats is also low, we propose that abnormal megakaryocytopoiesis in this animal is a reflection of an acquired stem cell disorder induced by the prolonged hypoxia resulting from the severe anemia.

© 1991 by The American Society of Hematology.
histologic processing. Shrinkage was estimated as the ratio of RBC diameter in tissue sections to the diameter measured in suspensions of whole rat blood.\(^6\)

Quantitation of immature Mk's using acetylcholinesterase staining (SACHE\(^+\) cells). Smears were made with a paint brush washed with normal rat serum from the marrow of split tibiae, air dried, and fixed in 3% glutaraldehyde for 10 minutes. These were stained for AChE activity according to the method described by Jackson.\(^8\) SACHE\(^+\) cells were located with bright field microscopy under a 100\(\times\) oil immersion objective and had to fit the criteria described by Jackson\(^9\): diameter of less than 13 \(\mu\)m (measured with a calibrated micrometer), the presence of cytoplasmic AChE reaction product that appears diffusely golden brown, and a high nuclear/cytoplasmatic ratio. After morphologic classification, at least 200 AChE containing Mk's were sized and the ratio of SACHE\(^+\) Mk's to AChE\(^+\) cells greater than 13 \(\mu\)m was determined. The total number (No.) of SACHE\(^+\) cells per cubic millimeter of marrow was calculated using the formula proposed by McDonald et al:\(^10\)

\[
\text{Total No. of SACHE}^+\text{ Cells/mm}^3\text{ of Marrow} = \frac{\text{No. of Recognizable Mks in Sections/mm}^3}{\text{No. of } >13\, \mu\text{m Diameter AChE}^+\text{ Cells on Smears}} \times \frac{\text{No. of } >13\, \mu\text{m Diameter AChE}^+\text{ Cells on Smears}}{\text{No. of } >13\, \mu\text{m Diameter AChE}^+\text{ Cells on Smears}}
\]

CFU-Mk determination. The growth of Mk colonies that develop from Mk progenitors (CFU-Mk) of rat bone marrow was studied using the in vitro system previously described by Kellar et al.\(^11\) In brief, rat femoral marrow cells were cultured at 2\(\times\)10\(^5\) cells/mL in 35-mm Petri dishes (four replicative dishes for each rat) in McCoy's medium supplemented as described by Williams and Jackson,\(^4\) 0.3% agar, and 20% fetal calf serum (FCS) heat inactivated. Rat spleen conditioned medium (SCM), prepared according to the procedure described by Kellar et al,\(^11\) was added to the dishes before adding the cells in the agar medium in a volume from 0.025 to 0.20 mL. Briefly, the supernatant of normal rat spleen cells incubated for 7 days in \(\alpha\)-medium with 5% FCS and pokeweed mitogen (5\%, 1:15 dilution) was used for CFU-Mk growth. Cultures were incubated for 8 days at 37\(^\circ\)C in 5% CO\(_2\) in water-saturated air. Identification of Mk colonies was facilitated by staining dried cultures in situ for AChE. Cultures were scored under an inverted microscope and clusters containing three or more AChE\(^+\) cells were counted as an Mk colony.

Table 1. Peripheral Blood Values in Different Experimental Groups of Rats

<table>
<thead>
<tr>
<th>Group of Rats</th>
<th>Body Weight (g/dL)</th>
<th>Hb (g/dL)</th>
<th>PCV (L/L)</th>
<th>RBC (x10(^9)/L)</th>
<th>WBC (x10(^9)/L)</th>
<th>Platelet count (x10(^9)/L)</th>
<th>Rtc (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemic b/b rats (8)</td>
<td>44 ± 9(^*)</td>
<td>2.62 ± 0.72(^*)</td>
<td>14 ± 3(^*)</td>
<td>3.26 ± 1.00(^*)</td>
<td>15.50 ± 4.00(^*)</td>
<td>560 ± 122(^*)</td>
<td>46 ± 10(^*)</td>
</tr>
<tr>
<td>b/b Chronically transfused (5)</td>
<td>140 ± 23</td>
<td>14.5 ± 1.25</td>
<td>47 ± 2</td>
<td>7.68 ± 1.1(^*)</td>
<td>5.02 ± 0.93</td>
<td>892 ± 162</td>
<td>1.9 ± 0.8</td>
</tr>
<tr>
<td>b/b Partially transfused (5)</td>
<td>100 ± 21</td>
<td>8.34 ± 0.88(^†)</td>
<td>35 ± 6.7</td>
<td>5.2 ± 1.5</td>
<td>5.3 ± 1.35</td>
<td>730 ± 72(^†)</td>
<td>ND</td>
</tr>
<tr>
<td>Iron-treated b/b rats (9)</td>
<td>142 ± 23</td>
<td>11.25 ± 1.0(^o)</td>
<td>41 ± 2</td>
<td>10.4 ± 1.6(^*)</td>
<td>5.03 ± 1.0</td>
<td>718 ± 109(^*)</td>
<td>10.8 ± 5.45(^†)</td>
</tr>
<tr>
<td>Controls (7)</td>
<td>123 ± 44</td>
<td>14.85 ± 1.4</td>
<td>44 ± 3</td>
<td>6.00 ± 0.78</td>
<td>5.56 ± 1.2</td>
<td>984 ± 75</td>
<td>3.1 ± 2.7</td>
</tr>
</tbody>
</table>

Values are mean ± SD. The number of rats is given in parentheses.

Abbreviations: ND, not determined; Rtc, reticulocytes.

Significance of the difference from controls: \(^*\)P < .001; \(^†\)P < .01; \(^o\)P < .05.

\(^\circ\)Lymphocytes \(\times 10^5\) L.
Table 2. Mk Number per Unit Volume (N), Mean Mk Diameter (D), and SAChE+ Cell Number in Experimental Groups of Rats

<table>
<thead>
<tr>
<th>Group of Rats (n)</th>
<th>Mean Mk No. (x 10^5/mm³)</th>
<th>Mean Mk Diameter (um)</th>
<th>Total No. of SAChE+ Cells/mm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemic b/b (9)</td>
<td>2.14 ± 0.6*</td>
<td>30.41 ± 1.48*</td>
<td>220 ± 63*</td>
</tr>
<tr>
<td>b/b Chronically transfused (5)</td>
<td>4.89 ± 0.29</td>
<td>24.74 ± 0.76</td>
<td>420 ± 60</td>
</tr>
<tr>
<td>b/b Partially transfused</td>
<td>2.90 ± 0.16†</td>
<td>25.67 ± 1.04†</td>
<td>260 ± 40†</td>
</tr>
<tr>
<td>Iron-treated b/b (6)</td>
<td>3.31 ± 0.85†</td>
<td>27.22 ± 2.46†</td>
<td>250 ± 49†</td>
</tr>
<tr>
<td>Controls (8)</td>
<td>4.66 ± 0.41</td>
<td>24.15 ± 0.70</td>
<td>400 ± 58</td>
</tr>
</tbody>
</table>

Values are mean ± SD from two separate experiments. The number of rats is given in parentheses. Significance of difference from controls: *P < .001; †P < .01.

from b/b rats of 2.14 ± 0.6 was significantly reduced when compared with the mean Mk number per cubic millimeter from control rats (4.66 ± 0.41). In chronically transfused b/b rats mean Mk number per cubic millimeter was normalized (4.89 ± 0.29) and not different from the mean Mk number per cubic millimeter found in controls, while in partially transfused b/b rats as well as in iron-treated b/b rats the Mk number per cubic millimeter was higher (3.31 ± 0.85 and 2.90 ± 0.16, respectively) than in anemic b/b rats, but still significantly lower than in controls.

Mean Mk diameter determined on histologic sections was significantly larger (Table 2) in anemic b/b rats than the mean Mk diameter in controls. After chronic transfusion, the mean Mk diameter returned to the control value. In partially transfused b/b rats and in iron-treated b/b rats the mean Mk diameter decreased but remained larger than in the controls.

The total number of SAChE+ cells in anemic b/b rats (Table 2) was lower when compared with that of control rats. After chronic transfusion the total number of SAChE+ cells in b/b rats was increased and did not differ from the total number of SAChE+ cells found in controls. In partially transfused b/b rats and in iron-treated b/b rats, the total number of SAChE+ cells increased as compared with anemic b/b rats, but was still lower than in controls.

The number of CFU-Mk-derived colonies was related to the amount of stimulator added to the cultures in b/b and control rats (Fig 1), the plateau dose of SCM being 0.1 and 0.2 mL, respectively. The number of Mk colonies per 2 x 10⁵ cells plated at the corresponding plateau dose of SCM was significantly reduced in b/b rats (35 ± 6) compared with controls (75 ± 18). In chronically transfused b/b rats the number of CFU-Mk-derived colonies was normalized (90 ± 17) while in partially transfused b/b rats and in iron-treated b/b rats Mk colony number increased, but was still lower (51 ± 22 and 42 ± 12, respectively) than in controls.

The number of CFU-GM-derived colonies per 0.5 x 10⁵ cells plated and 5% of colony-stimulating factor was significantly reduced in b/b rats compared with controls (Table 3). In chronically transfused b/b rats the number of CFU-GM colonies was not different compared with controls, while in partially transfused b/b rats and in iron-treated b/b rats CFU-GM-derived colonies were increased but still lower than in controls.

The number of nucleated cells per femur in b/b rats was three times less than in controls (Table 4). After chronic transfusion and iron treatment the number of nucleated cells per femur increased and was not different compared with controls.

A significantly lower absolute number and percentage of nonproliferative granulocytes (META + GRAN) and total number of granulocytic cells were found in anemic b/b rats' femoral bone marrow (Table 4).

DISCUSSION

The present study was prompted by our previous work in which we showed that the hereditary anemic b/b rat has hypomegakaryocytic thrombocytopenia associated with increased Mk size and an accelerated maturation rate of recognizable Mks. It was then postulated that these abnormalities may be the consequence of a primary genetic defect in the b/b rat or secondary to the severe anemia.

The results of this study show that hypomegakaryocytic thrombocytopenia in the anemic b/b rat is the consequence of a decreased number of Mk progenitors in the bone marrow. Furthermore, we have shown that the decreased number of Mk progenitors and accompanying changes in
megakaryocytopoiesis in b/b rats are secondary to the severe anemia. Supporting this suggestion are the results obtained in a group of chronically transfused b/b rats in which Mk progenitors, SAChE+ cells, Mk number, Mk size, and platelet counts returned to normal values.

The feature of abnormal megakaryocytopoiesis in the anemic b/b rat closely resembles the changes in Mk cell lineage observed in mice12,17 and rats subjected to prolonged hypoxia by others19 and by us.18 It was recently shown that prolonged hypoxia induces hypomegakaryocytic thrombocytopenia by reducing the pool of committed Mk progenitor cells17 along with the reduction of SAChE+ cells.12 The extremely low arterial oxygen content as the best parameter of hypoxia has been found in b/b rats. The normalization of megakaryocytopoiesis in b/b rats along with the increase of arterial oxygen content after chronic transfusion indicates that abnormal megakaryocytopoiesis in this animal may be mediated by hypoxia because of severe anemia. The normalization of megakaryocytopoiesis seems to be dependent on the complete correction of anemia because partial correction of anemia by partial chronic transfusion in the presence of still-decreased arterial oxygen content raised the concentration of CFU-Mk, SAChE+ cells, Mk number, and platelet counts, but the return to normal values was not achieved.

However, the basic mechanism by which severe anemia produces a decrease in CFU-Mk in b/b rats is still uncertain. Recently, it was proposed that prolonged hypoxia may produce hypomegakaryocytic thrombocytopenia by reducing the pool of committed Mk progenitor cells at the expense of a greatly expanded erythroid progenitor pool as a consequence of the excessive demand for compensatory erythropoiesis.12 This mechanism does not seem to operate in decreasing Mk progenitor cell number in the b/b rat because the number of CFU-erythroid (E)–derived colonies in this animal was found to be extremely low, despite the high level of biologically active erythropoietin.4

Hypomegakaryocytic thrombocytopenia in the b/b rat can be explained by the deleterious effect of prolonged hypoxia because of severe anemia on the hematopoietic tissue. This suggestion is based on the findings that b/b rats have decreased numbers of CFU-Mk and CFU-GM along with CFU-E and burst-forming unit erythroid (BFU-E).4 After chronic transfusion, CFU-Mk – and CFU-GM–derived colonies as well as platelet and granulocyte counts returned to the normal values. The effect of hypoxia on the behavior of hematopoietic stem cells and their descendents has been extensively studied under various experimental conditions,15,21 but none of these conditions can be applied to the b/b rat model. The fundamental difference between various experimental models and the b/b rat stems from the fact that the b/b rat exhibits a proliferative defect in the erythroid progenitor cells1 that prevents an orderly compensatory response of the erythron to the hypoxic stimulus.22,23 The absence of this response4 in combination with severe anemia because of the defect in transmembrane iron transport into erythroblasts3 produces the state of prolonged hypoxia. Therefore, it is possible to assume that prolonged hypoxia alters hematopoietic stem cell response,24 which further contributes to the numerous defects in hematopoiesis observed in b/b rats.

One may also associate hypomegakaryocytic thrombocytopenia in the b/b rat with generalized iron depletion in body tissue that is known to exist in this animal.12 Particularly regarding the fact that the influence of iron as a regulator of hematopoiesis besides the low intracellular iron content is difficult to examine. The role of iron as a regulator of thrombopoiesis has been controversial38,39 despite the fact that concomitant thrombocytopenia and megakaryocytopoiesis were observed in humans with severe iron-deficiency anemia38,39 and a decrease of Mk concentration was reported in experimentally induced severe iron-deficiency anemia.39

However, in a group of b/b rats treated with iron we have

Table 3. Bone Marrow CFU-GM-Derived Colonies With 5% Colony-Stimulating Factor in Different Experimental Groups of Rats

<table>
<thead>
<tr>
<th>Group of Rats</th>
<th>No. of CFU-GM (0.5 x 10^6 cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemic b/b (4)</td>
<td>7.1 ± 2.0*</td>
</tr>
<tr>
<td>b/b Chronically transfused (3)</td>
<td>36.6 ± 10.0</td>
</tr>
<tr>
<td>b/b Partially transfused (5)</td>
<td>25 ± 11†</td>
</tr>
<tr>
<td>Iron-treated b/b (4)</td>
<td>25.1 ± 12.0†</td>
</tr>
<tr>
<td>Controls (3)</td>
<td>59.5 ± 22.0</td>
</tr>
</tbody>
</table>

Values are mean ± SD for groups of rats with two plates per rat. The number of rats is given in parentheses. The same results were obtained in two separate experiments. Significance of difference from controls: *P < .001, †P < .01.

Table 4. Number of Nucleated Cells and Morphologically Recognizable Bone Marrow Cells per Femur

<table>
<thead>
<tr>
<th>Group of Rats</th>
<th>Nucleated Cells/Femur x 10^6</th>
<th>Total No. of Cells/Femur x 10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PG</td>
<td>META</td>
</tr>
<tr>
<td>Control (5)</td>
<td>72.5 ± 35</td>
<td>1.6 ± 0.7</td>
</tr>
<tr>
<td>b/b (8)</td>
<td>28.5 ± 8*</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>b/b + Fe (5)</td>
<td>75.3 ± 20</td>
<td>1.7 ± 0.3</td>
</tr>
<tr>
<td>b/b Chronic transf. (5)</td>
<td>56.2 ± 12</td>
<td>1.1 ± 0.8</td>
</tr>
</tbody>
</table>

Number of rats given in parentheses. Values are mean ± SD. Numbers in brackets indicate percentage of nucleated cells per femur. Abbreviations: See Materials and Methods. Significance of difference from controls: *P < .05; †P < .01.
found improvement, but not normalization of megakaryocytopoiesis; ie, CFU-Mk, SACH-E' cell, Mk number, Mk size, and platelet counts did not return to normal values. In addition, we observed that iron treatment of the b/b rat resulted in a significant increase of the originally decreased concentration of CFU-GM-derived colonies, but normalization was not achieved. Similarly, we have recently demonstrated that iron treatment of the b/b rat substantially increased the concentration of CFU-E-derived colonies and improved anemia, but the Hb and CFU-E concentrations were not completely normalized. Therefore, it appears that the feature of abnormal megakaryocytopoiesis as well as granulocyte and erythroid cell lineage still persists after iron treatment in b/b rats.

In conclusion, we believe that abnormalities of megakaryocytic cell lineage in b/b rats can be best interpreted as a consequence of an acquired disorder of the hematopoietic stem cell owing to the deleterious effect of prolonged hypoxia resulting from the severe anemia. The role of the prolonged hypoxia in producing an acquired hematopoietic defect may be further examined by applying a reliable assay to examine CFU-spleen in b/b rats under appropriate experimental conditions.

ACKNOWLEDGMENT

The authors thank Milijana Vasiljevska, Institute for Experimental Medicine, Military Medical Academy of Belgrade for the excellent development and care of our Belgrade rat colony. We are grateful to Dr. Carl Jackson from St. Jude Children’s Hospital, Memphis, TN, for critical reading of the manuscript.

REFERENCES

9. Cullen WC, McDonald TP: Comparison of stereologic techniques for the quantification of megakaryocyte size and number. Exp Hematol 14:782, 1986
Abnormal megakaryocytopoiesis in the Belgrade laboratory rat

Z Rolovic, N Basara, N Stojanovic, N Suvajdzic and V Pavlovic-Kentera

Updated information and services can be found at:
http://www.bloodjournal.org/content/77/3/456.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml