Development and Characterization of a Cyclophosphamide-Resistant Subline of Acute Myeloid Leukemia in the Lewis x Brown Norway Hybrid Rat

By Todd M. Koelling, Andrew M. Yeager, John Hilton, Darlene T. Haynie, and Joseph M. Wiley

Preclinical studies of resistance to alkylating agents in the Lewis x Brown Norway hybrid (LBN) rat model of acute myeloid leukemia (AML) have hitherto been limited by the sensitivity of LBN AML cells to cyclophosphamide (CY). We developed a CY-resistant subline of LBN AML by serial intravenous (IV) passage of AML cells followed by in vivo exposure to CY (100 mg/kg) 14 days later. After 18 and subsequent passages, CY-treated AML cells remained viable despite ex vivo incubation with 70 to 100 μmol/L 4-hydroperoxycyclophosphamide (4HC) or in vivo exposure to 100 to 300 mg/kg of CY. Once established, resistance to incubation with 4HC was stable in LBN AML cells after at least six serial in vivo passages without exposure to CY. Nevertheless, both control and CY-treated AML cells demonstrated similar dose-dependent sensitivity to 100 to 500 μmol/L phosphoramidase mustard (PhM), the active alkylating end-product of CY activation in vivo. Levels of aldehyde dehydrogenase (ALDH), which inactivates PhM, were significantly elevated in these CY-resistant AML cells: cytosolic and particulate ALDH fractions from these cells were 11 to 13 times control with NADP cofactor and propional substrate and three to four times control with NADP cofactor and benzaldehyde substrate. Further studies with this animal model of AML, in which resistance to CY is mediated by elevated ALDH activity, may elucidate mechanisms for effective elimination of drug-resistant leukemic cells ex vivo and in vivo.

© 1990 by The American Society of Hematology.

From the Oncology Center and the Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD. Submitted August 10, 1989; accepted May 23, 1990.

Supported in part by grants No. R01 CA40282 and P01 CA15396 (A.M.Y.) from the National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and by a research grant from the Children's Cancer Foundation, Baltimore, MD (A.M.Y.). T.M.K. is the recipient of a Henry Strong Denison Research Scholarship from The Johns Hopkins University School of Medicine.

Address reprint requests to Andrew M. Yeager, MD, Room 3-127, The Johns Hopkins Oncology Center, 600 N Wolfe St, Baltimore, MD 21205.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1990 by The American Society of Hematology.

0006-4971/90/7606-0021%3.00/0
AML cells appearing after CY treatment was repeated. At selected passages, suspensions of drug-exposed and control AML cells were used for studies of sensitivity to 4HC and phosphoramid mustard (PhM), and for determination of aldehyde dehydrogenase (ALDH) activity.

Ex vivo drug incubation. 4HC and PhM were obtained from Dr. O. Michael Colvin, The Johns Hopkins Oncology Center, and stored in a dessicator at 4°C. Solutions of 4HC and PhM were prepared in RPMI-1640 immediately before use. Suspensions of CY-exposed or control LBN AML cells (1.5 to 2.0 x 10⁶ cells/mL) were obtained from the bone marrow of leukemic rats, incubated for 30 minutes at 37°C with graded concentrations of 4HC or PhM, washed, and resuspended in cold RPMI-1640, and injected into syngeneic rats (10⁶ AML cells per rat IV). Recipients of AML incubated ex vivo with 4HC or PhM were then observed for development of leukemia or leukemia-free survival.

Release of CY exposure. To determine whether resistance was stable in the absence of continued in vivo exposure to CY, a sample of CY-treated LBN AML cells obtained after the 50th passage was serially transferred in vivo for six additional passages without exposure to the drug. Leukemic cells obtained from the sixth passage were incubated for 30 minutes with 100 μmol/L of 4HC and injected into LBN rats (10⁶ cells per rat), which were then observed for development of AML or for disease-free survival.

ALDH assay. Single-cell suspensions of AML cells obtained from the spleens of leukemic rats bearing either CY-treated or control AML were prepared in RPMI-1640 by teasing through a sterilized stainless-steel wire mesh (Newark Wire Cloth Co, Newark, NJ) and passage through a series of needles of decreasing lumen size. Leukemic cells were isolated by centrifugation of single-cell suspensions with Ficoll-diatrizoate (5.7 g of Ficoll 400 and 9.0 g of sodium diatrizoate/100 mL of distilled water) at 500 g for 30 minutes; the pellets were washed, recentrifuged, and resuspended in freezing medium (0.25 g/dL of Triton X-100, Sigma Chemical Co, St Louis, MO). Aliquots of AML cells in freezing medium (10 to 20 mg protein/mL) were stored in dry ice and ethanol at −70°C for 30 minutes; the supernatants were then used as the ALDH source. Partial fractions were obtained by resuspension of the AML cell pellet in a solution of 0.25 g/dL of Triton X-100 (Sigma), incubation for 30 minutes at 4°C, and centrifugation for 30 minutes at 48,000 g; the supernatant was used as the ALDH source. Enzyme activity was determined at room temperature (24°C) by a spectrophotometric technique that measured the change in fluorescence (excitation 350 nm, emission 450 nm) as a result of substrate-dependent reduction of nicotinamide adenine dinucleotide (NAD) as previously described.7 The reaction mixture contained 20 μL of cytosolic protein extract (10 to 20 mg protein/mL), 0.1 μmol/L of sodium-phosphate buffer (pH 7.4), 1 mmol/L of EDTA, 5 mmol/L of 2-mercaptoethanol, 20 μg/mL of aprotinin, and 100 μg/mL of leupeptin (all from Sigma Chemical Co, St Louis, MO). Aliquots of AML cells in freezing medium were placed in vials and frozen in a −40°C freezer until time of ALDH assay. Cytosolic protein extracts of AML samples were made by repeated freeze-thawing in a mixture of dry ice and ethanol at −70°C for 30 minutes; the resultant supernatants were then used as the ALDH source. Partial fractions were obtained by resuspension of the AML cell pellet in a solution of 0.25 g/dL of Triton X-100 (Sigma), incubation for 30 minutes at 4°C, and centrifugation for 30 minutes at 48,000 g; the supernatant was used as the ALDH source. Enzyme activity was determined at room temperature (24°C) by a spectrophotometric technique that measured the change in fluorescence (excitation 350 nm, emission 450 nm) as a result of substrate-dependent reduction of nicotinamide adenine dinucleotide (NAD) as previously described. The reaction mixture contained 20 μL of cytosolic protein extract (10 to 20 mg protein/mL), 0.1 μmol/L of sodium-phosphate buffer (pH 7.4), 1 mmol/L of EDTA, 5 mmol/L of 2-mercaptoethanol, and 100 μmol/L of NAD (Sigma) with 1 mmol/L of propanol as the substrate (total volume, 1.0 mL). Additional assays for ALDH were performed on freeze-thawed whole-cell extracts of LBN AML cells using 100 μmol/L of NAD phosphate (NADP) as the cofactor and a saturated solution of benzaldehyde as the substrate.11 Protein content was measured by the technique of Lowry et al,12 and ALDH activity was expressed as a nanomole of substrate cleaved per minute per milligram of protein.

Statistical analysis. Routine statistical calculations were performed with a hand-held scientific calculator (Hewlett-Packard, Corvallis, OR). Analysis of data from experimental and control groups was performed with nonparametric (eg, Wilcoxon rank-sum) tests. Graphic analysis of the data was done with a microcomputer (Model XT, IBM Corp, Armonk, NY) and a spread-sheet software package (Lotus Development Corp, Cambridge, MA).

RESULTS

Development of CY resistance. Syngeneic recipients of untreated LBN AML developed florid leukemia and died at a median of 21 days (range, 20 to 27; n = 10) after IV injection of 10⁶ cells per rat. Initially, rats given 100 mg/kg of CY 14 days after AML cell injection had substantial prolongation of survival and died with leukemia at a median of 65 days (range, 62 to 66; n = 3) after tumor cell transfer. With subsequent passages, resistance to CY was manifested by decreases in median survival times because of the earlier appearance of AML. By the 18th passage and CY exposure, rats died of leukemia at a median of 24 days (range, 23 to 29; n = 4) after injection of AML cells (P = .05 when compared with survival of rats given control LBN AML cells). The resistance to CY was stable after more than 40 subsequent passages: a statistically significant decrease (P < .001) in survival was observed in passages 11 through 20 and remained so in passages 21 through 60 (Fig 1). The growth kinetics in successive passages of CY-treated LBN AML were similar: the mean survival (±SD) of AML-bearing rats was 30.4 ± 6.4 days in passages 11 through 20, 31.9 ± 3.4 days in passages 21 through 30, 28.6 ± 4.5 days in passages 31 through 40, 27.1 ± 4.0 days in passages 41 through 50, and 27.2 ± 3.8 days in passages 51 through 60 (Fig 1).

To determine whether these AML cells were also resistant to administration of high-dose CY in vivo,17 groups of rats were given single intraperitoneal doses of CY (200 or 300 mg/kg) 14 days after injection of CY-treated or control CY-sensitive LBN AML (10⁶ cells per rat). Because these
doses of CY are curative in the original LBN AML but necessitate syngeneic marrow rescue. These animals then received 5 x 10^7 syngeneic marrow cells IV, 24 hours after high-dose CY. Rats given no CY or syngeneic marrow transplant died with AML at a median of 25 days after tumor transfer, similar to the recipients of the parent LBN AML (Table 1). Ten of 11 animals injected with CY-treated AML cells and given 200 mg/kg of CY plus marrow rescue died of AML (one animal died of drug toxicity), whereas all 11 recipients of control LBN AML had long-term leukemia-free survival after 200 mg/kg of CY and syngeneic marrow infusion (P < .001). Similarly, three animals with drug-resistant LBN AML given 300 mg/kg of CY and syngeneic marrow transplants died of AML (one other animal died of CY toxicity), while recipients of the original CY-sensitive AML line did not develop leukemia after this dose of CY and syngeneic marrow rescue (Table 1) (P < .01).

Ex vivo incubation with 4HC and PhM. The original LBN AML was eradicated by incubation with 70 μmol/L of 4HC, a concentration that spared the hematopoietic repopulating ability of normal rat marrow cells; and after incubation with higher concentrations of 4HC (100 μmol/L and above), both LBN AML cells and normal rat stem cells are killed. In concordance with these observations, we found that LBN rats injected with control AML cells exposed for 30 minutes to 70 μmol/L or 100 μM of 4HC did not develop leukemia, even after observation for more than 100 days following tumor cell injection; animals injected with 4HC-treated AML cells obtained from the ninth passage after exposure to CY also had long-term leukemia-free survival. In contrast, CY-treated AML cells obtained from the 18th and subsequent passages remained viable after ex vivo incubation with 70 μmol/L or 100 μmol/L of 4HC; all rats given AML cells incubated with these concentrations of 4HC died of leukemia at a median of 25 days (range, 21 to 32) or 28 days (range, 23 to 36), respectively, after injection (P < .01 and <.05, respectively, v control) (Table 2).

The observed resistance of LBN AML to 4HC was stable after in vivo passage without exposure to CY. Drug-resistant leukemic cells obtained after six serial passages in the absence of CY were incubated with 100 μmol/L of 4HC and then injected into LBN rats; these animals died of AML at a median of 25 days (range, 22 to 26; n = 4) after tumor cell transfer (P < .01 when compared with control LBN AML), similar to that observed in recipients of 4HC-treated leukemic cells obtained from rats exposed to CY in vivo.

Since PhM is the active alkylating end-product of CY metabolism, we also studied the effects of ex vivo incubation with PhM on the growth of CY-resistant and control LBN AML. In contrast to the resistance to 4HC observed after multiple passages and exposures to CY, both CY-resistant and control AML cells demonstrated similar dose-dependent sensitivity to PhM (Table 3). Exposure to 100 μmol/L of PhM did not greatly affect the survival of either drug-resistant or control LBN AML cells, whereas prolongation of survival was seen after incubation with higher concentrations of PhM. LBN rats given 10^6 CY-resistant or control leukemic cells incubated with 500 μmol/L of PhM died of AML at a median of 35 and 37 days, respectively, after injection, consistent with approximately a 4-log cell kill.1,4,19

ALDH activity. The levels of ALDH in erythrocyte-free cytosolic protein extracts of CY-resistant LBN AML cells were significantly elevated relative to control values (Table 4). When the assay was performed with benzaldehyde substrate and NADP cofactor, ALDH activity in drug-resistant cells resistant or parent LBN AML was significantly elevated relative to control values (Table 4).

Table 1. Effect of High-Dose CY Administration and Syngeneic Marrow Rescue on the In Vivo Growth of CY-Sensitive and CY-Resistant LBN Myeloid Leukemia

<table>
<thead>
<tr>
<th>Passage No.</th>
<th>Dose of 4HC (μmol/L)</th>
<th>DCM Cytotoxicity</th>
<th>DCM AML Survival (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>49; 100*[3]</td>
<td>35; 100*[4]</td>
<td></td>
</tr>
</tbody>
</table>

CY-resistant or control AML cells were incubated with 4HC for 30 minutes and injected into LBN rats (10^6 cells per rat IV). The median survival (with range in parentheses) is shown; numbers in brackets indicate the number of animals studied. For passages 18 through 50, data were pooled from three representative experiments with two or three rats in each experimental group. Unless otherwise indicated, rats died of leukemia.

* Rats killed after long-term survival without evidence of leukemia at necropsy.
† P < .01.
‡ P < .05 versus control (Wilcoxon rank-sum test).

leukemic cells obtained after six serial passages in the absence of CY were incubated with 100 μmol/L of 4HC and then injected into LBN rats; these animals died of AML at a median of 25 days (range, 22 to 26; n = 4) after tumor cell transfer (P < .01 when compared with control LBN AML), similar to that observed in recipients of 4HC-treated leukemic cells obtained from rats exposed to CY in vivo.

Since PhM is the active alkylating end-product of CY metabolism, we also studied the effects of ex vivo incubation with PhM on the growth of CY-resistant and control LBN AML. In contrast to the resistance to 4HC observed after multiple passages and exposures to CY, both CY-resistant and control AML cells demonstrated similar dose-dependent sensitivity to PhM (Table 3). Exposure to 100 μmol/L of PhM did not greatly affect the survival of either drug-resistant or control LBN AML cells, whereas prolongation of survival was seen after incubation with higher concentrations of PhM. LBN rats given 10^6 CY-resistant or control leukemic cells incubated with 500 μmol/L of PhM died of AML at a median of 35 and 37 days, respectively, after injection, consistent with approximately a 4-log cell kill.1,4,19

ALDH activity. The levels of ALDH in erythrocyte-free cytosolic protein extracts of CY-resistant LBN AML cells were significantly elevated relative to control values (Table 4). When the assay was performed with benzaldehyde substrate and NADP cofactor, ALDH activity in drug-resistant cells.
resistant LBN AML cells was elevated by nearly fourfold relative to control leukemia cells: 0.69 ± 0.24 versus 0.19 ± 0.09 (mean ± SD) nmol of NADP cleaved per minute per milligram of protein, respectively (P < .01). Using NAD and propanal substrate, cytosolic ALDH levels were elevated by approximately 11-fold in drug-resistant LBN AML cells (1.45 ± 0.58 nmol of NADP cleaved per minute per milligram of protein, v 0.13 ± 0.04 in control LBN AML cells; P < .01). Particulate fractions of the CY-resistant cells had threefold elevations in ALDH using the NADP-benzaldehyde assay (0.90 ± 0.11 nmol NADP cleaved per minute per milligram of protein, v 0.35 ± 0.02 in control cells; P < .01) and 13-fold increases in ALDH with the NAD-propanal assay (6.68 ± 1.01 nmol NADP cleaved per minute per milligram of protein, v 0.50 ± 0.09 in control cells; P < .01) (Table 4).

DISCUSSION

We have demonstrated that resistance to CY can be developed in a rat model of AML by chronic intermittent in vivo exposure to high doses (ca. L.D. 50) of the drug. Previous studies with the murine L1210 model of acute lymphocytic leukemia have shown that stable resistance to CY can be induced by in vivo exposure of leukemic cells to the drug. To our knowledge, however, this is the first report of the establishment of a CY-resistant subline of a rat model of AML. Since the LBN AML model is extensively used in the preclinical evaluation of antineoplastic agents and of the efficacy of allogeneic or syngeneic bone marrow transplantation in AML, the availability of a CY-resistant subline should be useful for complementary studies in a model of relapsed and/or drug-resistant leukemia. Indeed, fresh human leukemic cells have shown individual variability in sensitivity to the CY congeners mafosfamide and may be resistant to this agent, even before in vivo exposure to intensive combination chemotherapy.

As described with murine L1210 leukemia, resistance of LBN AML to CY was developed only after multiple passages and in vivo exposures to the drug; the resistant leukemia thus obtained survived exposure to a concentration of 4HC that is toxic to normal LBN rat hematopoietic stem cells. Since the parent LBN AML line cannot be grown in vitro cultures, the CY-resistant subline was developed by chronic intermittent in vivo exposure to the drug. It is therefore possible that the CY-resistant LBN AML subline described herein is not entirely a clonal population but retains some heterogeneity. Nevertheless, the level of resistance to CY has been stable after more than 50 in vivo passages (a time span of more than 3 years) and persists in the absence of continued exposure to the agent. In addition, the CY-resistant LBN AML has unique karyotypic markers distinct from the original chromosomal abnormalities described in the parent LBN AML line.

In concordance with observations in CY-resistant L1210 leukemia, we found that resistance of LBN AML to CY and 4HC correlated with significantly increased levels of ALDH, which inactivates the intermediate aldophosphamide to carboxyphosphamide. As expected with ALDH-mediated resistance, the sensitivity to PhM was similar in both CY-resistant and control LBN AML cells. Finally, coinubcation with diethylaminobenzaldehyde (DEAB), an inhibitor of ALDH, restores the sensitivity of CY-resistant LBN AML cells to 4HC. Taken together, these observations strongly suggest that resistance to CY in these rodent models of leukemia is most likely conferred by elevated ALDH activity.

The different magnitudes of increased ALDH activity observed with assays using either NAD or NADP as cofactors suggest that more than one ALDH system may have been affected by exposure to CY. Studies in rat hepatoma lines have showed multiple isozymes of ALDH, suggesting that continual selection pressures by drug exposure may enhance expression of more than one isozyme system. Although previous studies indicate that CY resistance is conveyed primarily through elevations of ALDH in soluble cytosolic fractions, we found that both particulate and cytosolic cellular fractions of drug-resistant AML also exhibit significantly increased enzyme activity. Nevertheless, the exact mechanisms that induce the observed increases in ALDH activity of CY-resistant LBN AML cells are not known at this time.

These studies of CY resistance of LBN AML currently require the use of syngeneic rats for serial in vivo transfer of drug-resistant cells. Recently, a subline of this rat leukemia has been described, which can be propagated in vitro in both suspension culture and clonogenic assay; development of a clonal in vitro subline of CY-resistant LBN AML by exposure to 4HC may complement investigations with the in vivo drug-resistant subline. Further study with this rodent leukemia model may not only provide insight into the treatment of relapsed human AML but may also lead to strategies for eradication of occult and potentially drug-resistant leukemic cells by ex vivo chemopurging before clinical autologous marrow transplantation.

ACKNOWLEDGMENT

The authors wish to thank Brenda Klausberg for excellent technical assistance. Drs. O. Michael Colvin and John Russo provided valuable advice on the conduct of these studies.
REFERENCES

Development and characterization of a cyclophosphamide-resistant subline of acute myeloid leukemia in the Lewis x Brown Norway hybrid rat

TM Koelling, AM Yeager, J Hilton, DT Haynie and JM Wiley