L428 Cells Derived From Hodgkin's Disease Produce E Rosette-Inhibiting Factor

By Idiko Katay, Uta Wirnitzer, Heinz Burrichter, Christof von Kalle, Elizabeth Schell-Frederick, Volker Diehl, and Michael Schaad

Diminished rosetting capacity of T cells is a well-known phenomenon in Hodgkin's disease, and inhibitors of E rosette formation have been reported to be present in the plasma of patients with Hodgkin's disease. The cell line L428, representing an in vitro counterpart of Hodgkin and Sternberg-Reed cells, could be shown to release a factor capable of suppressing the binding of sheep red blood cells (SRBC) to normal peripheral blood lymphocytes or to a T-cell line (L735). At maximally effective concentrations, RIF (rosette inhibiting factor) inhibited T lymphocyte rosetting by approximately 40% (mean from 184 healthy controls). The diminished E rosetting of T lymphocytes from Hodgkin's patients was not further suppressed by added RIF. This factor inhibited binding of SRBC to their target cells at 37°C but not at 4°C. The factor could be stored lyophilized at −20°C and was stable at 56°C (30 minutes). RIF was inactive below pH 6 and above pH 9 or after trypsin digestion. Purification by affinity, ion exchange, and molecular sieve chromatography showed activity peaks at 12.5 Kd, 25 Kd, 50 Kd, and 100 Kd.

© 1990 by The American Society of Hematology.

Preparation of Supernatant

Culture supernatants of L428 cells (5 x 10⁶ cells/mL) grown for 3 days in FCS-free conditions were harvested and centrifuged once at 200g for 15 minutes, twice at 1,700g for 20 minutes. After addition of the protease inhibitor Aprotinin (1000 U/mL; Trasylol, Bayer, Leverkusen, FRG) and adjustment of the pH with HEPES buffer (10 mmol/L; final concentration, Whittaker Bioproducts, Walkersville, MD), the solution was passed through a 0.2-μm filter (Sartorius, Göttingen, FRG) and concentrated at 4°C by ultrafiltration (mol wt exclusion 5 Kd; Amicon, Danvers, MA). Unless specified otherwise, the material was then lyophilized.

Rosette Assay for Determination of RIF-Activity

Mononuclear cells (2 x 10⁶; PBL; separated by Ficoll-Hypaque [FFH density centrifugation] or L735 were diluted in 0.5 mL RPMI 1640 medium conditioned with HEPES, penicillin, streptomycin, and glutamine (PSG) and incubated with 0.2 mL of serial dilutions (5⁻¹ to 5⁻⁹) of test samples. After incubation at 37°C for 60 minutes, the cells were washed once with RPMI 1640, then incubated with 0.5 mL neuraminidase-treated SRBC (sheep red blood cells) for 5 minutes at 37°C, centrifuged at 200g for 3 minutes, and incubated overnight (16 hours) at 4°C. After addition of Acridine Orange, the percentage of E rosette-forming cells was determined with a Leitz fluorescence microscope (Oberkochen-Württemberg, FRG).

Chromatography

Hydroxyapatite chromatography. Lyophilized supernatant was dissolved in 10 mL starting buffer (1 mg protein/mL) and applied to a Hydroxyapatite column/FPLC (18 x 2.6 cm, BioRad, Richmond, CA), and fractionated by a linear phosphate gradient (phosphate buffer 0.01 mol/L to 0.6 mol/L; pH 7.4; retention volume, 700 mL; flow rate, 1 mL/min).

From the Medizinische Klinik I, der Universität zu Köln, Köln, West Germany.

Submitted February 9, 1989; accepted April 21, 1990.

Supported by grants from "Deutsche Krebshilfe e. V." and "Deutsche Forschungsgemeinschaft."

Address reprint requests to Idiko Katay, MD, Medizinische Klinik I, der Universität zu Köln, Joseph-Stelzmann-Str, 9, D-5000 Köln 41, West Germany.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1990 by The American Society of Hematology. 0006-4971/90/7604-001$3.00/0

Amino Acid Analysis

Volume, 60 mL; flow rate, 17.5 mL/min. Amino acid analysis was performed with an analyzer from Applied Biosystems 420A by G. Multhaup at Professor K. Beyrer's laboratory, ZMBH, Heidelberg, FRG.

Fluorescence-Activated Cell Scanner Analysis (FACS)

Fluorescence-activated cell scanner (FACS) studies have been performed with a FACScan (Becton Dickinson, Mountain View, CA). T11,1A (10C7E9) and T11,1B (539/8a) were a kind gift of Professor S. Meuer (DKFZ, Heidelberg, FRG). T11,1B (OKT1 1) has been purchased from Ortho-mune (Raritan, NJ). Antibodies against CD4 (Biotin-IOT4) and CD8 (Biotin-IOT8) were purchased from Immunotech Laboratories (Marseille, France), magnetic bead coupled antibodies using a sorting column were purchased from Biotechnische Geräte/Spezialelektronik, Bergisch Gladbach, FRG.

Statistical Evaluation

The paired Student's t test has been used to calculate the statistical significance of the given data. A deviation of more than 30% from the control values has proved to be a reliable criterion for practical purposes.

RESULTS

RIF Production by Different Cell Lines

Cell-free supernatants of the Hodgkin cell lines L428, L428KS, L428KSA, L540, and L591 grown under serum-free conditions were harvested at day 3 and tested for RIF activity. The supernatant of L428 provided highest activity compared to other Hodgkin cell lines (L428KS, L428KSA, L540, L591). For that reason L428 supernatants were chosen for factor purification. Serum-free supernatant of L428 was tested for the presence of RIF activity at days 1 through 6. Maximal inhibition was obtained at day 3, correlating with the overall viability of the cells in culture.

Determination of RIF Activity

Whereas the native supernatant of L428 inhibited E rosette formation, the same material did not show activity after concentration by Amicon filtration and lyophilization. When the concentrated material was rediluted to starting volume, activity was again demonstrable. In some serum-free supernatants from L428 cultivated from frozen stocks, E rosette inhibition could only be detected after dilution of supernatant. A possible explanation for these observations could be varying factor production. Comparison of our Hodgkin cell lines showed not only highest activity in fresh L428 supernatant but also highest dilutability. The effect of serial dilution of RIF activity is shown in Fig 1. At high- or low-factor concentration, no effect on E rosetting could be detected, whereas in between, significant inhibition was observed. This bell-shaped relationship and the degree of maximal rosette inhibition did not change during further purification, but the activity was found at higher dilutions while total protein content was decreasing. For all the data presented in this report, serial dilutions of RIF have been tested.

Physical Stability of RIF

The half-life of the RIF activity in crude supernatant or partially purified material in solution at 4°C or −20°C was about 3 weeks. Storage at temperatures of 20°C or 37°C caused a total loss of activity within hours. RIF was stable over months if stored at −80°C or as a lyophilized preparation at −20°C. Activity was preserved up to 30 minutes at 56°C but was completely lost after 1 minute at 100°C. RIF was inactivated under mild acidic (pH 6) or alkaline (pH 8) conditions (Table 1).

Fig 1. Dose-response relationship of RIF activity. RIF activity is concentration dependent following a bell-shaped dose-response relation. Unpurified serum-free L428 supernatant, O—O; partially purified RIF—pooled fractions of the 100-Kd mol wt range from the Bio-Gel A 0.5 (B100), O—O; purified RIF, 60-Kd protein band of the material after passage over anion exchange column (B100 M60). (Starting material for fivefold serial dilutions was adjusted to 1 μg protein/mL, respectively.)
Enzyme Treatment

RIF activity of partially purified supernatant (after ion exchange chromatography) was retained when treated with neuraminidase but did not withstand trypsin incubation.

Chromatographic Purification

Chromatography (Fig 2) of the lyophilized supernatant (starting with 10 L resuspended in 4 mL) on a calibrated Biogel A 0.5 column yielded active fractions at 100, 50, and 12.5 Kd (Fig 3). In a former purification, additional activity could be demonstrated at 25 Kd that could not be detected in the profile shown in Fig 3 due to overload of the column in the 50-Kd range.

Further purification of lyophilized active fractions was performed either on a hydroxylapatite column (elution of active RIF at 0.2 mol/L and between 0.4 and 0.6 mol/L phosphate concentration) or anion exchange column (elution of RIF activity at a NaCl concentration between 0.38 and 0.44 mol/L). Sequential purification by molecular sieve and anion exchange chromatography yielded pure protein, as documented by SDS-PAGE (Fig 4) with RIF activity.

Aminocacid analysis of the 12.5-Kd and 50-Kd protein band gave identical results. This strongly supports the suggestion of a monomer of 12.5-Kd with a tendency to aggregation or polymerization. Rechromatography of the 100-Kd peak on a LKB TDK 4000 Blue Column (HPLC) revealed activity in the 50-Kd and 25-Kd fraction. Chromatofocusing showed activity in fractions at pH 7.8 to 8.1.

Biochemical and Biologic Properties

Incubation of sheep or human erythrocytes with RIF did not show a reliable effect on E rosetting, whereas incubation of T lymphocytes reproducibly showed significant inhibition. For that reason activity of a given material (supernatant or column fractions) was tested by incubation of T lymphocytes.

The optimal incubation period for the demonstration of the RIF effect was 60 minutes at 37°C, with less inhibition than 30 minutes and no additional effect up to 180 minutes. Maximum achievable inhibition of healthy donor PBL rosetting was 60%, with a mean of 38% (in 184 healthy controls, P < .001). Using the T-ALL line L735, similar inhibition was demonstrable (mean 35%, n = 64, P < .001). In lymphocytes from patients with active Hodgkin's disease, the initially diminished E rosetting could not be further suppressed (Fig 5). This impaired rosetting capacity of Hodgkin PBL could be restored by overnight incubation in at least 6% FCS. After FCS treatment of T cells from healthy donors as well as from Hodgkin's patients, less than 25% rosette inhibition by RIF incubation was observed, which we consider not to be significant. RIF also inhibited the rosetting of peripheral blood T cells and L735 with normal human erythrocytes.

E rosette inhibition by RIF has never been observed to reach 100%. A possible explanation might be an effect specific for some subpopulation(s). To address this problem we tested rosette inhibition on T4+ and T8+ lymphocyte populations from healthy donors. T4+ and T8+ subclasses were purified by overnight adhesion to plastic surfaces to remove monocytes and MACS® to more than 95% as shown by FACS analysis. The E rosette inhibition was identical for both cell populations in these experiments (data not shown).
Inhibitors of E rosette formation have been reported to be present in the plasma of patients with active HD.14-16,29 Holm et al18 and Sudgen et al19 demonstrated that the inhibitory activity of HD sera was located in the lipoprotein fraction of plasma, confirming earlier observations of Fucks et al14 and Bieber et al.17

L428, a cell line representing an in vitro counterpart of Hodgkin and Sternberg-Reed cells, produces a factor capable of diminishing the rosette-forming capacity of T lymphocytes with SRBC as well as with human erythrocytes (rosette-inhibiting factor = RIF).

Similar to results of other investigators who have purified rosetting-inhibitory factors from serum in patients with chronic renal failure,10 hepatitis B,11 or early breast cancer,12 we found up to 60% inhibition of rosette formation.

The diminished rosetting capacity of PBL from Hodgkin’s patients is not further decreased by exogenously added RIF. Whether this is due to the presence of “endogenous RIF” in the plasma of Hodgkin’s patients remains to be proven. After
assigned the role of an alternative pathway of T-cell activation. The binding sites of different MoAbs describe a functional division into two major regions of the CD2 molecule: T11α and T11β. Antibodies to the three epitopes of T11α (T11,1A, T11,1A', T11,1B) interfere with binding of the natural ligand of the CD2 (LFA3/T11TS). The T11β region is not involved in binding of LFA3/T11TS. According to their role in activation of T cells via CD2, three epitopes of T11β (T11,2A, T11,2A', T11,2B) have been identified.

Blocking and activation tests are currently being conducted to identify the exact site of RIF interaction with the CD2 receptor. Up to now, blocking studies with MoAbs have been performed on the T11,1A and T11,1B epitopes of the T11α region of CD2 that mediates E rosetting through binding of the LFA3/T11TS antigen. Our preliminary results show no effect of RIF on T11,1A and T11,1B antibody binding either at 37°C or at 4°C. This may be due to the much higher affinity of antibodies for their target structures as compared to that of the receptor for its ligand, as has been shown for the LFA1/ICAM1 interaction. Dustin and Springer showed an increased adhesiveness of LFA1 to ICAM1 by second-antibody crosslinking of T3Ti (TCR). This was transient and temperature dependent and not associated with a change in cell surface expression as measured by immunostaining.

As upregulation or downregulation of receptor expression or functional modulation by a third activation site cannot be excluded, further experiments on expression and regulation by cell metabolism have to be performed.

Discovery of the physiologic relevance of the CD2 receptor fuels speculation concerning RIF. The receptor is postulated to be the region of influence of RIF and is at the same time a means of T-cell activation, be it alone or in combination with other receptors. If RIF could be demonstrated to interfere with the activation of T cells, this could help to explain one step in the pathogenesis of the functional T-cell defect in Hodgkin's patients.

REFERENCES

expression of T11 cDNA reveal a receptor-like structure on human T lymphocytes. Proc Natl Acad Sci USA 84:2941, 1987
L428 cells derived from Hodgkin's disease produce E rosette-inhibiting factor

I Katay, U Wirnitzer, H Burrichter, C von Kalle, E Schell-Frederick, V Diehl and M Schaadt