Thrombospondin Functions as a Cytoadhesion Molecule for Human Hematopoietic Progenitor Cells

By Michael W. Long and Vishva M. Dixit

We explored the role that thrombospondin (TSP), a multifunctional extracellular matrix protein, plays in hematopoietic cell-cell and cell-matrix interactions. Thrombospondin synthesis is differentially regulated in human long-term bone marrow cultures. Consistent with this, human hematopoietic progenitor cells of all three lineages (erythroid, megakaryocyte, and granulocyte) use TSP as an attachment protein. However, terminally differentiated cells (erythrocytes and neutrophils) show absent or reduced attachment to TSP. The region within the TSP molecule that mediates cell attachment (cell-binding domain) was delineated by examining both attachment to proteolytic fragments of TSP and by inhibition of cytoadhesion using monoclonal antibodies directed against TSP domains. The cell binding domain resides toward the C-terminus of a 140 Kd chymotryptic fragment of TSP. We conclude that thrombospondin functions as a hematopoietic cytoadhesion molecule, capable of binding primary hematopoietic progenitor cells, and may, therefore, be important in blood cell development.

© 1990 by The American Society of Hematology.

METHODS

Cell attachment assay. Proteins (unless otherwise stated, 20 μg/mL) in serum-free RPMI media were immobilized onto tissue culture plastic by incubation at 37°C for 1 hour. Subsequently, nonspecific plastic binding sites were blocked by incubating (30 minutes at 37°C) with 10 mg/mL bovine serum albumin (BSA) in RPMI 1640 (GIBCO, Grand Island, NY). The immobilized protein was washed twice with fresh RPMI and incubated with washed cells (5 × 10⁵/mL suspended in RPMI containing 1% BSA) for 15 minutes at 37°C. Suspension (ie, nonadherent) cells were removed by aspiration, dishes were washed twice with RPMI, adherent cells were removed with the aid of a rubber policeman, and TSP-bound cells were quantitated by hemocytometer. For each of three replicate cultures, two separate hemocytometer counts were done and averaged. HEL cells were cultivated as described elsewhere. Thrombospondin (TSP) is a large trimeric disulfide-linked glycoprotein (subunit molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE] is 180,000). Thrombospondin, like fibronectin, is a modular glycoprotein having a domain-like structure. These protease-resistant domains mediate one or more TSP interactions. These include the binding of cells, calcium, glycosaminoglycans, fibrinogen, fibronectin, plasminogen, plasminogen activator, and type V collagen. Thrombospondin is synthesized by a variety of cells including endothelial cells, fibroblasts, keratinocytes, smooth muscle cells, carcinoma cells, glial cells, megakaryocytes, and type II pneumocytes (reviewed in reference 6). Synthesized TSP is secreted and incorporated into the extracellular matrix, and matrix-bound TSP is necessary for cell adhesion, cell growth, and carcinoma cell invasiveness.

Immunohistochemical studies from our laboratories indicate that thrombospondin exists in a variety of bone marrow cells other than megakaryocytes (vide infra). However, little is known concerning the function of this molecule in the hematopoietic microenvironment. We report that thrombospondin plays an important role as a cytoadhesive molecule involved in processes underlying hematopoietic cell proliferation and/or differentiation.

From the Departments of Pediatrics and Pathology, and The Committee on Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI.

Submitted December 11, 1989; accepted February 26, 1990.

Supported in part by Grants No. 871329 from the American Heart Association, No. HL31568 and No. HL35255 from the NIH, and a grant from the Children’s Leukemia Foundation of Michigan. V.M.D. is an Established Investigator of the American Heart Association.

Address reprint requests to Michael W. Long, PhD, Department of Pediatrics, Room M7510 MSRIB I, Box 0684, University of Michigan, Ann Arbor, MI 48109.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1990 by The American Society of Hematology.

0006-4971/90/7512-0010$3.00/0

© 1990 by The American Society of Hematology.

0006-4971/90/7512-0010$3.00/0

© 1990 by The American Society of Hematology.

0006-4971/90/7512-0010$3.00/0

© 1990 by The American Society of Hematology.

0006-4971/90/7512-0010$3.00/0

© 1990 by The American Society of Hematology.

0006-4971/90/7512-0010$3.00/0

© 1990 by The American Society of Hematology.

0006-4971/90/7512-0010$3.00/0

© 1990 by The American Society of Hematology.

0006-4971/90/7512-0010$3.00/0

© 1990 by The American Society of Hematology.

0006-4971/90/7512-0010$3.00/0

© 1990 by The American Society of Hematology.

0006-4971/90/7512-0010$3.00/0

© 1990 by The American Society of Hematology.

0006-4971/90/7512-0010$3.00/0

© 1990 by The American Society of Hematology.
type (ie, each lineage), replicate colony numbers are averaged. The percent attachment for each colony cell type, for each individual is calculated as the total number of adherent progenitor cells divided by the total number of input progenitor cells times 100. The results are expressed as the mean percent attachment ±95% confidence interval, based on each individual's percent attachment averaged over the indicated number of experiments (n). Such calculations allow specific attachment to be determined irrespective of the known and large donor-donor variations in progenitor cell number.

Purification of TSP proteolytic fragments. Human TSP was purified from human platelets by a combination of heparin-sepharose and gel filtration chromatography, as described previously.11 Proteolytic fragments were purified as follows: The 140 Kd fragment (Fig 1) was generated by subjecting TSP to digestion with 0.1% (wt/wt) chymotrypsin (60 U/mg; Sigma Chemical Co, St Louis, MO) in 20 mmol/L Tris, pH 7.6, 0.15 mol/L NaCl, and 1 mmol/L CaCl2 for 20 minutes at 37°C. The digestion was stopped by the addition of phenylmethylsulfonyl fluoride (PMSF) to a final concentration of 1 mmol/L. The resulting digest was fractionated by heparin-sepharose chromatography.12 The nonheparin-binding 140 Kd fragment was present in the column runthrough. The 25 Kd heparin binding fragment was eluted with high salt-containing buffer (20 mmol/L Tris, pH 7.6, 0.6 mol/L NaCl). The 120 Kd/18 Kd fragment was formed by letting the chymotrypsin digestion proceed longer (40 minutes) using the same enzyme:substrate ratio, temperature, and buffer as described above for the generation of the 140 Kd fragment. The nonheparin-binding 120 Kd/18 Kd fragment was similarly resolved from the 25 Kd heparin-binding fragment by heparin-sepharose chromatography (proteolytic fragment resolution on SDS-PAGE is shown in Fig 7, see below). As with intact TSP, 20 μg/mL of proteolytic TSP fragments were immobilized onto tissue culture plastic, and cell attachment was done as described above. To quantitatively assess the binding of the various TSP fragments to tissue culture plastic, we used radiolabeled fragments of known specific activity. Both the intact 140 Kd and 120/18 Kd fragments bound in equimolar amounts. The isolated 25 Kd heparin-binding domain bound in 20-fold molar excess, probably reflecting the hydrophobic character of this domain.13

Anti-thrombospondin monoclonal antibodies. Murine monoclonal anti-TSP antibodies were prepared and purified by protein A affinity chromatography as described previously.14-16 These antibodies and their TSP binding domains are as follows: C6.7, which reacts with the 18 Kd fragment14; A6.1, A4.1, and D4.6, which react with the region proximal to the carboxy terminus of the 120 Kd fragment14; and A2.5, which reacts with the 25 Kd heparin-binding domain.16 These antibodies are specific for their stated epitopes and do not crossreact with other matrix proteins such as fibronectin.14-16

Metabolic labeling. Human erythroleukemia cells (1 x 10⁶) were metabolically labeled with 35S methionine (100 μCi per dish for 6 hours) in methionine-free minimal essential medium (GIBCO) containing 10% dialyzed fetal calf serum, which had been depleted of exogenous TSP by affinity chromatography on an anti-TSP monoclonal antibody (MoAb) column. After the labeling period, the media were aspirated off the cell layer, and both detergents (1% Triton X-100, 0.5% sodium deoxycholate, and 0.1% SDS) and protease inhibitor (1 mmol/L PMSF) were added to give the indicated final concentrations. Immunoreactive TSP was precipitated with a 1:100 dilution of polyclonal rabbit anti-TSP antiserum and protein A sepharose as described by Varani et al.17 Pre-immune rabbit serum served as control antibody. The washed immunoprecipitates were eluted by boiling in Laemmli SDS-PAGE sample buffer in the presence of 2% 2-mercaptoethanol and fractionated on a 5% Laemmli polyacrylamide gel. Radioactive bands were visualized by fluorography with En Hance (NEN Research Products, Boston, MA) and subsequent autoradiography. Human marrow NALD cells were labeled identically, except that the cells were cultivated serum-free with 1% BSA replacing the 10% dialyzed fetal calf serum.

Fig 1. A model of TSP subunit structure showing the location of functional domains and antibody binding sites in relation to cell adhesion. A linear diagram of the TSP peptide chain and its various chymotryptic fragments is shown. The amino-terminal heparin binding domain (■) and the carboxy-terminal 18 Kd platelet binding fragment (□) are indicated as are the binding sites of the various MoAbs (▼). The 18 Kd platelet binding fragment is in disulfide linkage to the rest of the molecule. The 140 Kd fragment (which is missing the amino-terminal heparin binding domain) is capable of supporting cell adhesion. Further proteolysis results in the formation of the 120/18 Kd fragment and a loss in the ability to support cell adhesion. The site of proteolysis that results in the formation of the disulfide linked 120/18 Kd fragment and loss in the ability to support cell adhesion is indicated (♦). The isolated heparin binding domain by itself is also incapable of supporting cell adhesion (see text and figures).
Hematopoietic progenitor cell assays. Human hematopoietic progenitor cell assays were done using accessory cell-depleted marrow as target cells and optimal concentrations of hematopoietic growth factors. For progenitor cell attachment to TSP, human marrow NALD cells are attached and removed as described above, and cultured to determine the actual frequency of TSP-bound progenitors. Granulocyte and megakaryocyte progenitor cell cultures are cultivated as described by Long et al. Erythroid and mixed cellularity progenitors were grown as described by Lim et al. Progenitor cells are cultivated for 14 days at 37°C, 100% humidity, 7% CO₂ in room air, in the presence of hematopoietic growth factors at limiting cell dilutions of 50,000 cells/mL.

Immunocytochemistry. Bone marrow adherent stromal cell populations were grown in long-term bone marrow cultures for 1 to 4 weeks according to the procedure of Gartner and Kaplan. As described previously, cell-laden glass coverslips were methanol fixed, the endogenous peroxidase activity blocked with 0.03% H₂O₂ in absolute methanol, and Fc receptors blocked with 3% goat sera. Next, the cells were incubated with polyclonal anti-TSP IgG and antibody-localized using a biotinylated anti-IgG avidin-peroxidase procedure. Controls done each week of culture were as follows: coverslips not exposed to anti-TSP (ie, secondary antibody control), to determine nonspecific binding; and cells exposed to blocking concentrations of H₂O₂, to test for residual endogenous peroxidase activity.

RESULTS

Thrombospondin localization in human long-term bone marrow cultures. In order to examine TSP expression by human bone marrow stromal cells, adherent cell populations were grown in long-term bone marrow cultures for 1 to 4 weeks. Many cultivated marrow cells show intracellular TSP (Fig 2), with megakaryocytes having the highest intensity (4+), mononuclear cells intermediate in reactivity (3-4+), fibroblast-like cells staining weakly (1+ to trace), and macrophage-like cells negative. Developmentally, long-term bone marrow cultures first evolve hematopoietic foci that consist of hematopoietic cells intimately attached to underlying (plastic-adherent) stromal cells. During the first week of culture, these foci show intermediate (1+ to 3+) TSP reactivity in the attached hematopoietic cells and little to no reactivity in the stromal cells (Fig 2A). At week 2, the Stromal cells are more confluent, and the attached hematopoietic cells are strongly (3-4+) positive (Fig 2B). By week 4, TSP-positive strands of extracellular matrix are observed that are closely associated with the developing hematopoietic cells (Fig 2C). At this time, fibroblast-like cells (which were negative early in culture) are strongly positive (data not shown). No peroxidase activity is seen in secondary antibody controls (ie, in the absence of primary antibody; Fig 2D) or in cells in which endogenous activity is blocked by MeOH/H₂O₂ (data not shown).

Cytoadhesion properties of thrombospondin. To assess the cell attachment capacity to TSP, an in vitro assay was developed using plastic-immobilized proteins (see Methods). Thrombospondin was observed to function as a cytoadhesion molecule for human erythroleukemia (HEL) cells, a leukemic cell line expressing erythroid, macrophage, and megakaryocytic characteristics. Cellular attachment studies indicate that a significant proportion of leukemic HEL cells (34% ± 10%) attach to TSP-coated dishes, as compared with low attachment (6.0% ± 4%) to BSA-coated control dishes (P < .05 by Student's t test; n = 36) (Fig 3). The extent of adherence reaches a plateau at 10 μg/dish (Fig 4), and equilibrium binding occurs within a 15-minute time period (Fig 5). Human erythroleukemia cells do not attach to laminin, an extracellular matrix protein that does not show cytoadhesive properties for hematopoietic cells. Erythroleukemia cells also bind to fibronectin (total binding approximately 40%; laminin and fibronectin data not shown), which is consistent with previous observations indicating that erythroid cells bind to this molecule.

In order to determine if the TSP attachment characteristic of HEL cells is a function of leukemic transformation, we examined TSP attachment of both human bone marrow cells and the progranulocytic cell line, HL60. HL60 cells did not attach to varying concentrations of TSP (data not shown). In contrast, nonadherent (to plastic) bone marrow cells attached to TSP, showing a fivefold (5.2 ± 2, n = 4) greater attachment than the control protein (BSA). Both of these observations suggested that TSP attachment is not due to leukemic transformation per se.

We further explored the role of TSP as a hematopoietic cytoadhesion molecule by examining the attachment of committed hematopoietic progenitor cells to this molecule. Hematopoietic progenitor cells of each lineage (granulocytic, megakaryocytic, and erythroid) specifically attach to TSP (Fig 6). Importantly, pluripotent progenitor cells (CFUGEMM) adhere to TSP. Control protein (BSA-coated) cultures show only low numbers (if any) of granulocyte progenitor cells (Fig 6) consistently attaching to this immobilized protein, whereas other progenitor cell phenotypes (data not shown) fail to attach to BSA. Finally, circulating human erythrocytes fail to attach to TSP (<0.1%), whereas a low percentage of circulating neutrophils retain this capacity (14.4% and 7.1% neutrophil binding to TSP and BSA, respectively).

Identification of the thrombospondin cellular binding domain. Identification of the hematopoietic cell binding domain of TSP was done with two complementary approaches: attachment to proteolytic fragments of TSP and inhibition of cellular attachment by TSP-specific MoAbs. Proteolytic fragments of TSP (as shown in Fig 1) were prepared by chymotrypsin digestion and heparin-sepharose affinity chromatography. Digestion of intact TSP by chymotrypsin for 30 minutes results in the generation of a 25 Kd heparin-binding domain and a large 140 Kd fragment. Upon further exposure to chymotrypsin, the 140 Kd fragment is cleaved to a 120 Kd and an 18 Kd fragment. However, the 18 Kd fragment remains in disulfide linkage to the 120 Kd species.

The purified 140 Kd fragment contains small amounts of the 120 Kd fragment (Fig 7A, lane 2), and the purified 120 Kd fragment contains residual (undigested) 140 Kd fragment (Fig 7A, lane 3). These minor residual proteolytic fragments are not of significance in cellular attachment as complete cell attachment is observed only when the 140 Kd fragment is the predominant species (Fig 7C). When the combined 120/18 Kd fragment is the predominant species, cells fail to bind the immobilized peptide (Fig 7C). HEL cells...
TSP FUNCTIONS AS A CYTOADHESION MOLECULE

Fig 3. Cellular attachment to TSP. HEL cells were allowed to attach to plastic tissue culture dishes coated with the indicated concentrations of (plastic-immobilized) TSP or BSA. For each experiment, all conditions are cultured as three replicates per condition. Values are expressed as mean ± SD of the mean replicate culture values averaged over the indicated number (n) of experiments. Immunolocalization of TSP in human long-term bone marrow stromal cell populations. Long-term marrow cultures were established as described in Methods. At weekly intervals, cell-laden coverslips were removed, and TSP was localized by immunoperoxidase labeling. A: Hematopoietic foci at 1 week of culture. Underlying stromal cells stain weakly for TSP, whereas attached hematopoietic cells show intense staining. B: At 2 weeks, cultures show further development of hematopoietic foci with many TSP-positive cells. C: At 4 weeks of culture, TSP-positive strands of ECM are observed surrounded by developing hematopoietic cells. D: Hematopoietic foci at 2 weeks in which endogenous peroxidase and Fc receptor binding are blocked (see Methods) and then stained in the absence of primary antibody. Original magnification in A, B, and D is 40x; C, 25x.

Fig 4. Cellular attachment to varying concentrations of TSP. Cell attachment assay was done using immobilized protein as described in Methods. A, immobilized BSA; B, immobilized TSP (n = 4). Optimal values of HEL cell attachment (25% ± 7%) are not significantly different from that shown in Fig 3.

also fail to bind to the 25 Kd heparin-binding domain (Fig 7C). Consistent with this observation, cell attachment is not inhibited by heparin (data not shown). The 140 Kd fragment contains an Arg-Gly-Asp-Ser cell recognition sequence.29 However, this particular sequence is not involved in the attachment of hematopoietic progenitor cells as a vast molar excess (1 mmol/L) of the synthetic peptide Arg-Gly-Asp-Ser fails to inhibit attachment (data not shown).

Inhibition of cellular attachment by monoclonal anti-TSP antibodies not only confirms the conclusions drawn from the work with proteolytic fragments, but also serves to establish the specificity of cell attachment to TSP. Treatment with MoAbs that bind proximal to the carboxy-terminal 18 Kd fragment (A 4.1, A 6.1, and D 4.6); anti-TSP antibody specificity shown in Fig 1) completely abrogates the attachment of HEL cells to TSP (Fig 3). However, attachment is unaffected by the presence of MoAbs (A 2.5) that bind the 25 Kd heparin-binding domain,18 the 18 Kd (C 6.7) platelet-binding fragment,14 or inappropriate antibody controls (Fig 3).

Unfortunately, purification of primary hematopoietic progenitor cells in quantities sufficient for biochemical determinations is not technically feasible. However, radioimmunoassays (RIAs) of whole marrow (NALD) cell lysates are possible. Thrombospondin content was determined by RIA as described elsewhere.7 Marrow NALD cells were washed three times in PBS and cultivated for 2 days in the presence of TSP-depleted fetal calf serum. Thrombospondin depletion was done using an affinity column containing covalently coupled MoAb directed against TSP. Determination of TSP content in whole cell lysates of marrow NALD cells shows that large amounts of TSP (1,500 µg/10⁷ cells) are produced. These RIA data were confirmed by metabolic labeling and immunoprecipitation, done as described previously,7 of NALD human marrow cells. Metabolic labeling studies show that significant amounts of TSP are synthesized by this nonadherent population of marrow cells, as well as by HEL cells (Fig 7D). Moreover, metabolically labeled TSP is detectable in bone marrow (ie, NALD cell) cell conditioned media, showing that TSP is also secreted by this cell population (data not shown).

DISCUSSION

We conclude that thrombospondin, a well-characterized extracellular matrix (ECM) protein is synthesized by bone marrow cells and deposited within the ECM, and it functions within the hematopoietic microenvironment as a cytoadhesive protein for hematopoietic cells. Both pluripotent and committed progenitor cells bind to this molecule. The ability to use TSP as an attachment molecule is lost in mature erythroid cells but is retained in a proportion of mature neutrophils, although the variability in neutrophil binding makes the degree of reduction difficult to interpret. Meta-
bolic labeling studies indicate that nonadherent hematopoietic cells synthesize and release TSP, suggesting that perhaps these cells synthesize and attach to their own cytoadhesion molecule. Importantly, differential thrombospondin attachment is seen in leukemic cell lines. Human erythroleukemia cells attach in an equivalent fashion to normal bone marrow progenitor cells, whereas progranulocytic leukemia cells (HL60) fail to adhere to this molecule, suggesting that the characteristic attachment of HEL cells to TSP is not due to leukemic transformation per se.

The data indicating that thrombospondin functions as a cytoadhesion molecule for human hematopoietic cells shows the specific attachment of primary human pluripotent progenitor cells (CFC-GEMM) to this molecule, as well as progenitor cells committed to the erythroid, granulocytic, and megakaryocytic lineages. Furthermore, granulocytes and erythrocytes reduce or lose (respectively) the capacity to use thrombospondin as an attachment protein. Similar observations exist concerning the ability of fibronectin to function as a cytoadhesion protein. Recently, Tsai et al reported the adherence of early erythroid precursors to this protein. Coulombel et al recently demonstrated the attachment of human progenitor cells to marrow fibroblast-derived ECM. Their observations of reduced erythroid progenitor cell attachment to purified fibronectin and only partial inhibition of attachment with anti-fibronectin led to the conclusion that another matrix molecule is involved in erythroid progenitor cell attachment.

Fig 5. Kinetics of cellular attachment to immobilized TSP. HEL cell attachment assay was done at varying time points (see text). Values are normalized to percent peak binding. Values are mean ± SD for four separate experiments of three replicate attachment assays at each time point. The 100% peak value is 22.5 ± 3.0.

Fig 6. Human hematopoietic progenitor cell attachment to TSP. Cellular attachment was done as described in Methods, and progenitor cells were cultured as reported previously.10,11,18 Hematopoietic progenitor cells are identified by the formation of colonies (ie, clones) of differentiated progeny. CFC, colony forming cells; G, granulocyte; M, macrophage; E, erythrocyte; Mk, megakaryocyte; BFC-E, erythroid burst forming cell, and earlier progenitor than the CFC-E; CFC-GEMM, a mixed lineage progenitor cell colony. BSA indicates attachment of CFC-GM to immobilized BSA as a control protein (see text). Percent progenitor cell attachment is explained in Methods. Input values are: CFC-GEMM, 17 ± 10; BFC-E, 139 ± 107; CFC-E, 278 ± 227; CFC-GM, 168 ± 52; and CFC-MK, 49 ± 15, all per 10^5 TNC.

Fig 7. Cellular binding to proteolytic fragments of TSP. (A and B) SDS-PAGE of TSP and TSP proteolytic digests. Purified TSP fragments were examined on a 5% (A, lanes 1 through 3) or a 15% (B, lanes 1 and 2) polyacrylamide Laemmli gel system. (A) Lane 1, intact TSP; lane 2, 140 Kd fragment; lane 3, 120 Kd fragment. (B) Lane 1, 25 Kd heparin-binding domain; lane 2, 18 Kd carboxy terminal fragment. The 120 Kd and 18 Kd fragments are in disulfide linkage, but only the 120 Kd fragment is visualized on the 5% polyacrylamide gel and the 18 Kd fragment on the 15% gel due to the large differences in their molecular weights. All samples were reduced with 5% (vol/vol) 2-mercaptoethanol before loading, and gels were stained with Coomasie blue. The protein loads were approximately 10 μg. Molecular mass standard positions in kilodaltons are indicated by the numbers on the left. (C) HEL cell attachment to proteolytic fragments of TSP. Affinity-purified TSP fragments were prepared as described in Methods and immobilized on tissue culture plastic at a concentration of 20 μg/mL. Attachment assays were done as in Fig 3. Results are mean ± SD (n = 3). (D) Immunoprecipitation of TSP from metabolically labeled HEL cells and marrow NALD cells. Lane 1, total radiolabeled HEL cell medium proteins; lane 2, immunoprecipitation with anti-TSP antiserum; lane 3, HEL cell immunoprecipitation with control antibody (preimmune sera); lane 4, human NALD cell immunoprecipitation with anti-TSP antiserum; and lane 5, human NALD cell immunoprecipitation with control antibody.
cell attachment. Confirming this suggestion, we show that human erythroid progenitor cells attach to thrombospondin.

Attachment studies using TSP proteolytic fragments indicate that the 140 Kd proteolytic fragment contains the intact cell binding domain, whereas the 120/18 Kd disulfide-linked fragment fails to support cell adhesion. Since both the 140 Kd and 120 Kd fragments share a common amino terminal sequence,

it follows that proteolysis must occur at the carboxy terminus of the 140 Kd fragment, resulting in both the formation of the disulfide linked 120/18 Kd fragment and loss of the ability to support cell adhesion. Consistent with this observation, antibodies that bind close to the site of proteolytic cleavage (ie, the site that results in generation of the 120/18 Kd fragment; Fig 1, asterisk) are capable of inhibiting cell attachment to TSP. Mechanistically, the anti-TSP antibodies specifically bind to an area of the TSP molecule that would span at least 65 to 70 Kd, thus sterically inhibiting the binding of cells in an area that is much larger than the actual hematopoietic cell binding site. However, the proteolytic cleavage data further localizes the binding region to a region spanning approximately 20 to 40 amino acids just adjacent to the carboxy terminus. Whether this cleavage site represents the actual location of the cell-binding domain is presently being investigated.

Thrombospondin contains an RGDS sequence that resides within the 140 Kd fragment, near the carboxy terminus. However, excess concentrations of a tetrapeptide containing this sequence fail to abrogate cell attachment. Similar results are seen in other cell systems, indicating that this sequence does not play a role in cellular attachment for this molecule. In addition to hematopoietic cell attachment, the 140 Kd fragment also supports the attachment and spreading of squamous carcinoma cells and keratinocytes. In contrast, the 140 Kd fragment supports only the attachment of melanoma cells to TSP; spreading requires the additional presence of the 25 Kd heparin-binding domain. Thus, cellular responsiveness to TSP binding is highly dependent on cell phenotype.

The functional role of cytoadhesion molecules in the hematopoietic microenvironment is not well understood. To date, hematopoietic cells are known to specifically attach to three cytoadhesion proteins. Fibronectin, a ubiquitous ECM protein, mediates the attachment of many hematopoietic cell lines. The capacity to attach to fibronectin is developmentally regulated during erythropoiesis and also occurs in human erythroid progenitor cells, and attachment is required for murine erythroleukemia cell differentiation. Recently, a novel cytoadhesion molecule, hemenection, was described. Hemenection is restricted to the bone marrow in its organ distribution and shows a developmentally regulated, lineage-specific attachment of granulocytic cells. Finally, thrombospondin must be added to this category of hematopoietic cytoadhesion molecules and is the first molecule shown to attach pluripotent hematopoietic progenitor cells, as well as committed progenitor cells of each lineage.

Given the ubiquitous distribution of both fibronectin and thrombospondin, the question arises as to how specificity of either progenitor cell attachment or stem cell homing occurs. For cellular attachment, specificity may be regulated either at the level of receptor expression or receptor avidity. Stem cell homing, however, requires a highly specific recognition system. A number of recent studies demonstrate that lymphocyte homing involves specific interactions with vascular endothelial cell molecules (addressins) that import positional information to recirculating lymphocytes (reviewed in reference 39). The receptor for these addressins appears to be a lectin that recognizes phosphomannose. Less is understood concerning hematopoietic stem cell trafficking (homing). Interestingly, work by Aizawa and Tabassoli demonstrates that the homing receptor is a mannose/glucose specific lectin receptor. Unfortunately, hematopoietic addressins remain unidentified. Surely, these will be distinct from tissue nonspecific molecules, such as thrombospondin or fibronectin. Perhaps the role for TSP and other hematopoietic cytoadhesion molecules is to strengthen the eventual localization (bond) to the appropriate microenvironmental niche. Clearly, further studies are required to understand the role of thrombospondin and other cytoadhesion molecules in hematopoiesis and bone marrow transplantation.

ACKNOWLEDGMENT

The authors are indebted to Dr Thalia Papayannopoulou for her generous gift of the HEL cell line, Dr David Shapiro for careful review of the manuscript, Charles Yang, Karen O'Rourke, and Linda Gragowski for technical assistance, and Terry Oliver for preparation of the manuscript.

REFERENCES

1. Dexter TM, Wright EG, Kriza F, Lajtha LG: Regulation of haemopoietic stem cell proliferation in long term bone marrow cultures. Biomedicine 27:344, 1977

10. Long MW, Smolen JE, Szczepanski P, Boxer IA: Role of

Thrombospondin functions as a cytoadhesion molecule for human hematopoietic progenitor cells

MW Long and VM Dixit