Molecular Evidence for a Single Clonal Origin in Biphenotypic Concomitant Chronic Lymphocytic Leukemia and Multiple Myeloma

By D.L. Saltman, J.A. Ross, R.E. Banks, F.M. Ross, A.M. Ford, and M.J. Mackie

To establish the clonal origin of a case of concomitant B-cell chronic lymphocytic leukemia (IgMK) and multiple myeloma (IGAX), we analyzed the immunoglobulin (Ig) gene rearrangements in the patient’s blood and bone marrow. Despite the different isotypes, pretreatment examination of the heavy chain gene (JH) revealed a germline fragment and two identical rearrangements in the blood and marrow. Both κ and λ light-chain genes were rearranged in the blood, suggesting peripheral blood lymphocyte involvement in the myeloma. Analysis of the Ig genes after chemotherapy demonstrated no change in the Jκ or Cκ rearrangements; however, the λ genes were now in a germline configuration. Our results suggest that in this patient both chronic lymphocytic leukemia and myeloma originated from the same B-cell progenitor.

Case Study and Methods

Patient. A 52-year-old man was referred to the hematology department with a history of low back pain and fatigue. A physical examination at the time was within normal limits, with no palpable lymphadenopathy or hepatosplenomegaly. His initial investigations revealed a hemoglobin of 11.3 g/dL, white blood cell count (WBC) 6.4 x 10^3/L (26% neutrophils, 68% lymphocytes, 5% monocytes), and platelets 274 x 10^3/L. No plasma cells were seen in the peripheral blood. Serum immunoelectrophoresis demonstrated an Igκ λ paraprotein, and urinary electrophoresis showed free λ light chains. A bone marrow aspirate revealed a hypercellular marrow with increased numbers of plasma cells (20%) with some abnormal forms (Fig 1). One year after diagnosis the patient developed an increase in his paraprotein and hypercalcemia and was started on chemotherapy.

Flow cytometry. Mononuclear cells were separated from blood and marrow by centrifugation over Ficoll-Hypaque (FH, Pharmacia, AB, Uppsala, Sweden). Initial screening was carried out by incubating 5 x 10^6 cells with combinations of fluoroisothiocyanate (FITC) and phycoerythrin (PE) directly conjugated antibodies (Becton Dickinson Ltd, Mountain View, CA, Dako Ltd, High Wycombe, UK, respectively).

For indirect immunofluorescence, 5 x 10^6 cells were incubated with saturating concentrations of monoclonal antibodies (MoAbs) for 15 minutes at room temperature. This was followed by incubation in fluorescein-conjugated F(ab) sheep antimouse immunoglobulin (Sigma, UK Ltd, Poole) for 15 minutes at room temperature. Fluorescence was measured on a FacsCan (Becton Dickinson, Sunnyvale, CA) flow cytometer. Cells were tested with MoAbs recognizing the cluster of differentiation (CD) antigens and are listed in Table 1.

The antibodies used in this study were obtained from the following sources: DA6.31—MRC Human Genetic Unit; B1—Coulter, Hialeah, FL; RFT1—Scottish Antibody Production Unit; MHH6—A. McMichael, Oxford, England; BU12, CLB.Bly1, HB8, 915, 758, HD28—Third International Leucocyte Differentiation Workshop. Intracytoplasmic immunoglobulins were detected using intracellular staining carried out on cytospins following storage at −10°C, followed by thawing and fixation in 90% ethanol at room temperature. Washing in phosphate-buffered saline (PBS) was followed by incubation in 1:40 dilutions of FITC-conjugated goat anti-IgA, IgD, IgG, IgM, Kappa, Lambda, and rhodamine-conjugated antikappa and antilambda antisera (Kallestadt Ltd, Britt, Bucks, UK) for 1 hour at room temperature.

Southern Blot Analysis

High molecular weight DNA was extracted from peripheral blood and marrow by standard techniques. Ten micrograms was digested with the restriction enzymes BamHI and EcoRI, separated on 0.8% agarose gel by electrophoresis, and transferred to either Hybond-C or Hybond-N (Amer-
sham, UK), by the Southern technique.\(^7\) Hybridization with hexanucleotide random-primed (\(\alpha\) - 32P) dCTP (deoxycytidine triphosphate) probes was followed by washing with 0.1 \(\times\) SSC (sodium chloride and sodium citrate) and autoradiography using Kodak X AR-5 film at \(-70\)\(^\circ\)C for 2 to 10 days.\(^8\) The \(J_H\) and \(C_K\) probes were donated by T. Rabbitts (MRC, Cambridge).\(^9\) The \(C_{\lambda}\) probe was donated by B. Blomberg (University of Miami).\(^10\) The \(J_H\) probe is a 2.5-kb pair EcoRI to BglII human genomic fragment of the joining gene region. The \(C_K\) probe is a 2.5-kb EcoRI germ-line fragment of the constant region and the \(C_{\lambda}\) probe is a 0.8-kb EcoRI fragment of the constant region part of the \(\lambda\)-3 gene (\(\lambda\)-3).

RESULTS

Immunophenotyping. Initial screening for a suspected myeloma demonstrated an Ig\(\alpha\)A paraprotein on immunoelectrophoresis. Staining of the bone marrow for intracytoplasmic immunoglobulins demonstrated not only a population of Ig\(\alpha\)A plasma cells but also a population of Ig\(\alpha\)M small lymphocytes. Subsequent immunophenotyping by dual-fluorescence flow cytometry indicated the presence of a population of small CD19- and CD5-positive lymphocytes, which were surface IgM and \(\kappa\) restricted, consistent with a diagnosis of CLL. The B cells present were further investigated using indirect immunofluorescence with a panel of antibodies (Table 1).

Southern blot analysis. Figure 2 shows the results of the initial investigations of peripheral blood and bone marrow DNA using the immunoglobulin gene probes: Analysis with the \(J_H\) probe showed a single 16-kb germline band was present in the placental control. In addition to the germ-line, two identical bands were present in the blood and marrow samples (Fig 2a). The kappa-chain gene was rearranged in the blood and marrow (Fig 2b), while there was a rearrangement of the lambda-chain gene when compared with the placental control (Fig 2c).

One year after diagnosis the patient was started on chemotherapy because of an increase in his paraprotein and hypercalcemia. Reanalysis of the immunoglobulin genes

Table 1. Expression of Cell Surface Antigens on Patient's Peripheral Blood Mononuclear Cells

<table>
<thead>
<tr>
<th>Specificity</th>
<th>Antibody</th>
<th>% +</th>
<th>MFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>AFP</td>
<td>02</td>
<td>193</td>
</tr>
<tr>
<td>CD45</td>
<td>PD7/26</td>
<td>99</td>
<td>650</td>
</tr>
<tr>
<td>CD5</td>
<td>RFT1</td>
<td>72</td>
<td>431</td>
</tr>
<tr>
<td>Class II (framework)</td>
<td>DA6.231</td>
<td>56</td>
<td>575</td>
</tr>
<tr>
<td>CD19</td>
<td>BU12</td>
<td>45</td>
<td>407</td>
</tr>
<tr>
<td>CD20</td>
<td>B1</td>
<td>27</td>
<td>346</td>
</tr>
<tr>
<td>CD22</td>
<td>CLB.Bly1</td>
<td>07</td>
<td>326</td>
</tr>
<tr>
<td>CD23</td>
<td>MHH6</td>
<td>38</td>
<td>362</td>
</tr>
<tr>
<td>CD24</td>
<td>HB8</td>
<td>37</td>
<td>504</td>
</tr>
<tr>
<td>CD37</td>
<td>HD28</td>
<td>45</td>
<td>422</td>
</tr>
<tr>
<td>CD38</td>
<td>915</td>
<td>34</td>
<td>397</td>
</tr>
<tr>
<td>CD40</td>
<td>758</td>
<td>46</td>
<td>398</td>
</tr>
</tbody>
</table>

The cells were stained by indirect immunofluorescence, and results are given as percentage and median fluorescence intensity (MFI).
gene rearrangements, suggesting that despite the different common clonal origin, marrow generated two identical Ig heavy-chain developing in a patient with multiple myeloma. Cancer 50:594,
gene recombination was ineffective could have rearranged maturing of Cells that effectively rearranged s and evolved from gene rearrangements suggests existing leukemia is unclear. The normal hierarchy of isotypes and light-chain restrictions, the two diseases had a
the Ig using

DISCUSSION
We have investigated a case of concomitant CLL and MM using the Ig gene probes. DNA from the peripheral blood and bone marrow generated two identical Ig heavy-chain gene rearrangements, suggesting that despite the different isotypes and light-chain restrictions, the two diseases had a common clonal origin.

Our patient presented at diagnosis with both CLL and MM. Whether the MM represents an evolution of a pre-existing leukemia is unclear. The normal hierarchy of Ig gene rearrangements suggests that both malignancies evolved from a single B-cell progenitor. During differentiation with the initiation of immunoglobulin gene activity both heavy-chain alleles were rearranged at the pre-B-cell stage. Cells that effectively rearranged μ and α alleles were capable of maturing into CLL expressing IgMK. Cells in which the κ gene recombination was ineffective could have rearranged the λ genes. These cells with functional rearrangements of the μ and λ alleles were capable of a class switch from μ to α with maturation to multiple myeloma expressing IgALK.

The results of a previous investigation of coexisting CLL and MM using anti-idiotype antibodies suggested a single clonal origin. The authors of this study found a shared idiotype between CLL (IgG) and MM (IgA). They also demonstrated the expression of γ and α chains in the cytoplasm of cells that underwent a plasmacytoid differentiation in vitro after exposure to antigens and allogeneic T cells.

In a more recent investigation of concomitant CLL and MM expressing different isotypes, the Ig heavy-chain rearrangements suggested two distinct clones. However, in cases of biphenotypic and bigenotypic follicular lymphoma that have been analyzed in more detail, somatic mutation has occurred in the Ig heavy-chain V region genes, producing new restriction enzyme recognition sites leading to different heavy-chain rearrangements. In the cases described by Cleary et al., a common clonal origin was established by demonstrating comigration of t(14;18) gene rearrangements on Southern blot analysis. In another case without comigration of t(14;18) gene rearrangements, cloning and sequencing of the t(14;18) breakpoint DNA confirmed the single clonal origin of the two subpopulations of lymphoma. There is also evidence that myeloma may arise from a pluripotent stem cell. This is based on the finding of erythroid and megakaryocytic antigens on some myeloma cells and also on the demonstration of a rearrangement of the gamma T-cell receptor genes in myeloma cells with concomitant rearrangements of these heavy-chain genes.

In summary, we have investigated a case of concomitant CLL and MM. Our data suggest that despite the different isotypes and light-chain restrictions, both malignancies have arisen from a single B-cell progenitor. This may be the case for most cases of concomitant CLL and MM, similar to biphenotypic follicular lymphomas.

ACKNOWLEDGMENT
We thank the Photography Department of the MRC for work on the illustrations and Evalyn S. Kay for secretarial assistance.

REFERENCES
Molecular evidence for a single clonal origin in biphenotypic concomitant chronic lymphocytic leukemia and multiple myeloma

DL Saltman, JA Ross, RE Banks, FM Ross, AM Ford and MJ Mackie