Bryostatin 1 Induces Differentiation of B-Chronic Lymphocytic Leukemia Cells

By Hans G. Drexler, Suzanne M. Gignac, Richard A. Jones, Colin S. Scott, George R. Pettit, and A. Victor Hoffbrand

Peripheral blood cells from nine patients with B-chronic lymphocytic leukemia (B-CLL) were treated in vitro with bryostatin 1 (a macrocyclic lactone derived from a marine invertebrate). Like the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), bryostatin 1 activates protein kinase C (PKC), which plays a central role in the phosphati-dylinositol signal transduction pathway. The effects of bryostatin 1 alone and in combination with TPA or with the calcium mobilizing ionophore A23187 were assessed by morphological appearance, cell adherence and aggregation, RNA and DNA synthesis, and immunoglobulin (lg) production. While eight of nine B-CLL cultures remained proliferatively inert, bryostatin 1 could effectively trigger activation and differentiation of B-CLL cells in all cases as inferred by the induction of morphological changes, RNA synthesis, and monotypic Ig production. Addition of calcium ionophore A23187 to bryostatin 1-exposed cells resulted in significantly increased values for RNA synthesis and Ig production and in the acquisition of plasmacytoid morphology. Bryostatin 1 and the dual signal of bryostatin 1 plus A23187 mimicked the stimulatory action of TPA and the combination of TPA plus A23187, respectively. Overall, bryostatin 1 was less active than equivalent concentrations of TPA. This lesser efficacy may, however, reflect a quantitative rather than qualitative difference. Bryostatin 1 partially antagonized TPA-mediated effects on B-CLL cells suggesting different modes of action by the two activators. These studies indicate that bryostatin 1 has effective differentiation-inducing properties on B-CLL cells that can be accentuated by a calcium ionophore.

© 1989 by Grune & Stratton, Inc.

In contrast to phorbol esters, the bryostatins lack tumor promoting properties and may in fact be antipromoters. Two mechanisms that may partially explain the different action of these two agents are that the bryostatins induce accelerated degradation of PKC entailing a shorter duration of action, and they activate a second target in addition to the typical high affinity phorbol ester binding site with a possible feedback on the PKC pathway. Indeed, a family of several proteins was identified that were selectively phosphorylated in response to bryostatin 1 treatment but that were not phosphorylated in response to phorbol ester.

In HL-60 cells, the changes caused by bryostatin 1 were associated with induction of monocytic differentiation. This is consistent with the recent demonstration that bryostatin 1 also induces differentiation in the myeloblastic leukemia cell line KG-1 and in freshly isolated acute myeloid leukemia cells. Bryostatin 1 can also act as a multipotent stimulator of hematopoiesis.

From the Department of Haematology, The Royal Free Hospital School of Medicine, Hampstead, London; the Department of Haematology, Cookridge Hospital, Leeds, UK; and the Department of Chemistry, Cancer Research Institute, Arizona State University, Tempe, AZ.

Supported in part by grants from Hoffmann-LaRoche and the Gunnar Nilsson Cancer Research Trust Fund. The ASU-CRI component received financial support from the Fannie E. Rippel Foundation, the Arizona Disease Control Research Commission, the Robert B. Dalton Endowment Fund, and PHS Grants No. CA-16049-07-12 awarded by the National Cancer Institute, DHHS.

Address reprint requests to Hans G. Drexler, MD, PhD, DSM, German Collection of Microorganisms and Cell Cultures, Masche-roder Weg 1 B, D-3300 Braunschweig, FRG.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1989 by Grune & Stratton, Inc.
0006-4971/89/7405-0014$3.00/0

1747

PROTEIN KINASE C (PKC) represents the key enzyme in the signal transduction pathway proceeding through inositol phospholipid breakdown: activation of phospholipase C with hydrolysis of phosphatidylinositol biphosphate yields stoichiometric concentrations of diacylglycerol and inositol trisphosphate. While inositol trisphosphate mobilizes intracellular calcium pools and opens transmembrane Ca**+-permeable channels, diacylglycerol directly activates PKC. Activation of PKC has profound effects on a wide variety of biological responses including proliferation and differentiation.

PKC is also proposed to be activated by certain exogenous compounds such as phorbol esters, which by virtue of their greater stability and efficacy can thus trigger stronger effects than the endogenous analogs. Therefore, the pharmacological agents phorbol esters and calcium ionophores (which imitate the physiological element inositol trisphosphate by increasing intracellular Ca**+ levels) are not only able to independently mimic the two otherwise simultaneously activated arms of the inositol phospholipid signal transduction pathway, but also allow for experimental designs to bypass the initial parts of this signal transmission system.

In addition to the phorbol esters and related diterpines, another class of natural products, the bryostatins, have been identified that also bind to PKC with high affinity and that resemble the phorbol esters in their actions in a number of biological systems. Bryostatins, originally described in 1970 by Pettit et al., are naturally occurring macrocyclic lactones isolated from the marine animal Bugula neritina (a bryozoan) and are structurally unrelated to phorbol esters. The bryostatins at nanomolar concentrations inhibit phorbol ester binding to PKC and stimulate PKC activity to a comparable degree as phorbol esters. These studies with bryostatins may help to clarify the role of PKC in cellular function.

Although bryostatins may mimic some of the effects of phorbol esters, several other properties of bryostatins are different from those of phorbol esters. Antagonism of bryostatins to 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced biological responses has also been reported.
the production and release of lymphokines, for example interleukin-2 (IL-2) and IL-3.27,28

B-chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of small, resting, immunophenotypically distinct B cells with a low spontaneous proliferation rate. B-CLL cells are generally unresponsive to antigen and to conventional mitogens including anti-immunoglobulin (Ig), pokeweed mitogen, and lipopolysaccharide. They also fail to respond to growth factors such as IL-2 and IL-6 even though receptors for at least one of these cytokines (IL-2) are demonstrable.8,29 Unresponsiveness to normal regulatory or maturation signals may represent one mechanism by which these cells accumulate in excessive numbers.

We have previously shown that failure to respond to these growth and differentiation signals is not a consequence of a basic defect in a final common pathway of activation or of cellular differentiation mechanisms.28,30 Thus, activation and terminal differentiation can be induced by second messenger analogs acting on key enzymes in the signal transduction pathway located distal to initial signal elements.3,1

The above described observations provided the rationale for the current study in which we analyzed the response of B-CLL cells to bryostatin 1 and to compare its effect with that seen after treatment with the phorbol ester TPA. The results demonstrate that bryostatin 1 is an effective inducer of activation and differentiation of B-CLL cells as assessed by changes in morphology, RNA synthesis, and Ig production.

MATERIALS AND METHODS

Cells. Leukemic cells were isolated from heparinized peripheral blood of patients with B-CLL by density gradient centrifugation on Ficoll-Hypaque (1.077 g/mL, Lymphoprep; Nyegaard, Oslo, Norway). The harvested cells were immediately immunophenotyped and morphologic slides were prepared (see below). The clinical and laboratory data of the patients studied are detailed in Table 1.

Isolated cells were incubated in RPMI 1640 medium (GIBCO, Ukbridge, Middlesex, UK) supplemented with l-glutamine (2 mmol/L) (GIBCO), penicillin (100 IU/mL) (GIBCO), streptomycin (100 µg/mL) (GIBCO), and 10% (vol/vol) heat-inactivated (45 minutes at 56°C) fetal calf serum (Sera-Lab, Crowley Down, Sussex, UK).

Immunophenotyping. Surface antigen expression was examined

Table 1. Clinical Characteristics of Patients Studied

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Diagnosis</th>
<th>Age/Sex</th>
<th>WBC (x 10^9/L)</th>
<th>Treatment</th>
<th>Percent Polymphocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B-CLL</td>
<td>70/M</td>
<td>42</td>
<td>Chi, P</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>B-CLL</td>
<td>66/F</td>
<td>114</td>
<td>None</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>B-CLL</td>
<td>62/M</td>
<td>95</td>
<td>None</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>B-CLL/PL</td>
<td>68/M</td>
<td>90</td>
<td>None</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>B-CLL/PL</td>
<td>70/M</td>
<td>56</td>
<td>None</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>B-CLL/PL</td>
<td>72/M</td>
<td>460</td>
<td>Chi</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>B-CLL/PL</td>
<td>59/F</td>
<td>75</td>
<td>None</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>B-CLL/PL</td>
<td>76/F</td>
<td>55</td>
<td>CHOP</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>B-CLL</td>
<td>61/M</td>
<td>144</td>
<td>None</td>
<td>89</td>
</tr>
</tbody>
</table>

Abbreviations: Chi, chlorambucil; C, cyclophosphamide; H, Adriamycin (doxorubicin; Adria Laboratories, Columbus, OH); O, vincristine; P, prednisolone.

By direct and indirect immunofluorescence staining in suspension using the microtiter plate system.35 Intracytoplasmic and nuclear antigens were demonstrated on cytopsin slide preparations. Positivity was analyzed under an epi-immunofluorescence microscope (Nikon Labophot, Telford, Shropshire, UK) equipped with appropriate filters for double-staining.

In short, cells were first incubated with the specific murine anti-human monoclonal antibodies (MoAbs) (Table 2). Labeling of the cells was visualized with fluorescein isothiocyanate (FITC)- or tetramethyl rhodamine isothiocyanate (TRITC)-conjugated goat anti-mouse F(ab)2 isotype-specific antisera (Southern Biotechnologies, Birmingham, AL). Surface Ig expression was determined by double-staining using combinations of directly conjugated goat anti-human heavy chain- (FITC-IgG and TRITC-IgM) and light chain- (FITC-lambda and TRITC-kappa) specific antisera (Southern Biotechnologies). Intracytoplasmic Ig was examined on acetone-fixed cytopsin slides. The composite immunophenotypes of the samples studied are listed in Table 2.

The MoAbs were provided by Drs G. Janossy, London (RF-MoAbs); R. Armitage, London (UCHB-1); A. Freedman, Boston (B5, B7); T.A. Waldmann, Bethesda, MD (Tac); and W. Knapp, Vienna, Austria (VIM-13). OKT-10, Ki-67, anti-BrdU, and FMC-7 MoAbs were purchased from Ortho (High Wycombe, Bucks, UK). Dako (High Wycombe), Becton Dickinson (Cowley, Oxford, UK), and Sera-Lab (Cowley Down, Sussex, UK), respectively.

Cell cycle analysis. Cell cycle analysis was performed on cytopsin slide preparations that were fixed with cold methanol for 30 minutes. Mild alkaline denaturation with NaOH allowed for bromodeoxyuridine (BrdU) staining with the preservation of morphological details.34 Cells were stained for 30 minutes with Ki-67 or with

Table 2. Immunophenotypes of B-CLL Cells Studied

<table>
<thead>
<tr>
<th>Markers</th>
<th>Patients</th>
<th>CD 1</th>
<th>CD 2</th>
<th>CD 3</th>
<th>CD 4</th>
<th>CD 5</th>
<th>CD 6</th>
<th>CD 7</th>
<th>CD 8</th>
<th>CD 9</th>
<th>CD 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface immunoglobulin</td>
<td>IgG</td>
<td>5*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>IgM</td>
<td>0</td>
<td>29</td>
<td>37</td>
<td>95</td>
<td>80</td>
<td>52</td>
<td>95</td>
<td>93</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lambda</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>0</td>
<td>93</td>
<td>0</td>
<td>0</td>
<td>91</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kappa</td>
<td>0</td>
<td>51</td>
<td>0</td>
<td>88</td>
<td>0</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cytoplasmic</td>
<td>nd</td>
<td>Mk</td>
<td>Mk</td>
<td>Mk</td>
<td>nd</td>
<td>nd</td>
<td>Mk</td>
<td>Mk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-CLL associated markers</td>
<td>RFT-1</td>
<td>2</td>
<td>97</td>
<td>97</td>
<td>12</td>
<td>95</td>
<td>80</td>
<td>95</td>
<td>98</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFT-12</td>
<td>nd</td>
<td>94</td>
<td>98</td>
<td>6</td>
<td>83</td>
<td>90</td>
<td>92</td>
<td>99</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFT-9</td>
<td>96</td>
<td>88</td>
<td>96</td>
<td>80</td>
<td>93</td>
<td>97</td>
<td>91</td>
<td>94</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFT-20</td>
<td>94</td>
<td>92</td>
<td>98</td>
<td>78</td>
<td>92</td>
<td>95</td>
<td>97</td>
<td>92</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFT-6</td>
<td>20</td>
<td>61</td>
<td>95</td>
<td>77</td>
<td>87</td>
<td>95</td>
<td>94</td>
<td>90</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFT-2</td>
<td>22</td>
<td>4</td>
<td>2</td>
<td>70</td>
<td>92</td>
<td>75</td>
<td>94</td>
<td>90</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFD-2</td>
<td>11</td>
<td>0</td>
<td>88</td>
<td>95</td>
<td>82</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFLC-3</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B-cell activation markers</td>
<td>UCH-1</td>
<td>nd</td>
<td>1</td>
<td>0</td>
<td>83</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>90</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>nd</td>
<td>90</td>
<td>98</td>
<td>71</td>
<td>90</td>
<td>0</td>
<td>95</td>
<td>91</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>nd</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OKT-10</td>
<td>238</td>
<td>0</td>
<td>2</td>
<td>60</td>
<td>90</td>
<td>90</td>
<td>1</td>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tac</td>
<td>25</td>
<td>nd</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>94</td>
<td>90</td>
<td>0</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>T cell + monomyeloid cell markers</td>
<td>RFT-11</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIM-13</td>
<td>14</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIM-15</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: cytoplasmic M, IgM; K, kappa; L, lambda; nd, not done.

*Percent positive cells under fluorescence microscopy.
anti-BrdU MoAbs; this was followed by 30-minute incubation with FITC-conjugated goat anti-mouse antibodies. Cells were analyzed by immunofluorescence microscopy.

The Ki-67 nuclear antigen is expressed on all proliferating cells, preferentially during the late G1, S, G2, and M phases of the cell cycle, whereas cells in the G0 phase consistently lack the antigen.34 Uptake of BrdU, a thymidine analog, after a certain incubation time indicates DNA synthetic activity as it is incorporated into DNA.34

In vitro treatment. B-CLL cells (0.4 x 10⁶ total) were resuspended at 2 x 10⁶/mL in complete medium in flat-bottom 96-well Nunc culture plates (GIBCO). Cells were stimulated with the following reagents singly or in combination: 10⁻⁴ mol/L phorbol ester TPA (Sigma, Poole, Dorset, UK), 7.5 x 10⁻⁷ mol/L calcium ionophore A23187 (Sigma), or 10⁻⁴ to 10⁻¹¹ mol/L bryostatin 1. TPA, A23187, and bryostatin 1 were dissolved in DMSO at 10⁻⁸ mol/L and then further diluted to the final concentrations in culture medium. Isolation and purification of bryostatin 1 from the marine bryozoan Bugula neritina has been described in detail elsewhere.11

RNA and DNA synthesis. Uridine and thymidine incorporation were used as indicators of RNA and DNA synthesis, respectively. Cells were incubated with 1 μCi [³H]-uridine (specific activity 27 Ci/mmol; Amersham, Aylesbury, Bucks, UK) or 1 μCi [³H]-thymidine (specific activity 2.0 Ci/mmol; Amersham) for one or four hours, respectively, and subsequently harvested with a Titertek Multimash 2000 (Flow Lab, Rickmansworth, Herts, UK). Levels of tritium uptake were quantified with a liquid scintillation counter (LKB 1210 UlroBeta, Bromma, Sweden). These tests were performed in triplicate; the mean values are indicated and individual values did not deviate by more than 20%. Two cases were analyzed twice at 3-month intervals with similar results.

Immunoglobulin production. Ig production by the treated B-CLL cells was measured in a micro-Elisa system. Flat-bottom Immunulon Micro-Elisa plates (Dynatech Lab, Billinghamurst, Sussex, UK) were first coated with rabbit anti-human IgM (Dako) (450 ng/well) and 0.2% bovine serum albumin (Sigma), 0.2% (wt/vol) gelatine (BDH, Dagenham, Essex, UK), and 0.1% (wt/vol) sodium azide were added for two hours. After another washing, 40 μL of culture supernatant was added and the human Ig in the medium was allowed to bind to the coated wells by incubation for two hours at 37°C in a humidified atmosphere. The plates were then washed and 50 μL of a 1/1,000 dilution of goat anti-human IgM or IgG (heavy-chain specific) antibodies conjugated to alkaline phosphatase (Sigma) were added. After an incubation time of two hours at 37°C the plates were washed again and incubated with 100 μg/well of p-nitrophenylphosphate in Elisa Substrate Buffer (Whitley Scientific Ltd). The subsequent development of color dye due to the enzymatic conversion of p-nitrophenylphosphate to p-nitrophenol was quantified in a multiscan Elisa reader (Skatron) at a wavelength of 405 nm. The values obtained were related to those found with a reference standard serum of known Ig content (LAS-R Multiparameter Reference Serum; Lorne Lab, Reading, Berks, UK). To assess monoclonality of the Ig produced, alkaline phosphatase-conjugated goat anti-human kappa or lambda (light-chain specific) reagents (Sigma) were additionally used as secondary layers. Assays were performed in duplicate; two cases were studied twice at 3-month intervals with similar results.

Morphologic evaluation. Adherence of cells or formation of cell clusters were examined in the culture wells under an inverted microscope (Nikon Diaphot). Morphologic features were reviewed on cytospin slide preparations stained with May-Grunewald-Giemsa stain. This morphologic analysis was carried out in all cases at days 1 to 4.

RESULTS

Dose-response and time course kinetics of bryostatin 1 induction. Initial studies were undertaken to determine the range of concentrations at which bryostatin 1 was effective. B-CLL cells were cultured with graded doses of bryostatin 1. At 24-hour intervals RNA synthesis and Ig production were examined by [³H]-uridine uptake and ELISA, respectively. A representative experiment is illustrated in Fig 1. In a dose-dependent fashion, bryostatin 1 induced RNA synthesis and Ig production with maximal response at 10⁻⁹ mol/L bryostatin 1.
Analysis of time course kinetics showed the peak of RNA synthesis to occur at the second or third day of in vitro treatment. A representative example is given in Fig 2. An increase in Ig production was seen after 24 hours, and this continued steadily in the following days.

Treatment of one case with TPA showed similar dose-response curves and time kinetics as compared with those observed after induction with bryostatin 1. However, as pointed out later, TPA was more effective at inducing 3H-uridine incorporation and Ig production.

Morphologic examination. As early as 24 hours after initiation of the bryostatin 1-treated cultures, compact cell aggregates could be observed with the inverted microscope. At days 2 and 3, these clumps became large, densely packed cell clusters with surrounding single cells, which under higher magnification showed cytoplasmic extensions and pseudopodia (Fig 3B). The most pronounced clustering of cells was detected in cultures treated with 10⁻⁷ mol/L or 10⁻⁸ mol/L bryostatin 1.

It has been documented that lymphocyte activation is accompanied by increased adhesiveness and this adhesion of lymphocytes to one another is a leukocyte function antigen (LFA-1)-dependent process. This antigen-independent aggregation of a single cell type (homotypic adhesion) is known to be inducible by phorbol esters, ie, through direct stimulation of PKC.

Light microscopic examination of B-CLL cells treated with bryostatin 1 showed the acquisition of the following morphologic features beginning after 24 hours of incubation: enlargement of the cytoplasm, which remained clear; bizarre cellular forms and shapes in the majority of cells; cytoplasmic extensions and development of pseudopodia ("stretching") in most cells (Fig 4B).

DNA synthesis. To determine if bryostatin 1 induced proliferation, B-CLL cells were cultured with graded doses of the agent. The cultures were incubated for one to six days and labeled with 3H-thymidine. Except for one of the nine patients the proliferative response to bryostatin 1 in the B-CLL cells after one to six days was negligible, exceeding the control values by not more than two to fivefold. These results were confirmed by immunostaining with the MoAbs Ki-67 and anti-BrdU as these markers were positive in less than 0.1% of the control and treated cells. No mitotic figures (in <0.01% of the cells) were seen on cytopsin microscopic slides stained with May-Gruenwald-Giemsa stain.

The one exceptional case (patient no. 8) clearly displayed proliferative activity in cultures treated with bryostatin 1 as evidenced by the following parameters: 1% to 2% of the cells showed mitotic figures on cytopsin slides; 3H-thymidine uptake values increased to 200-fold relative to control values (20,000 cpm v 100 cpm); 12% of the cells were Ki-67 positive; 4% of the cells were anti-BrdU positive.

RNA synthesis. 3H-uridine incorporation was used as an indicator of RNA synthesis and consequently as a parameter of cellular activation of bryostatin 1-treated B-CLL cells. A significant increase in 3H-uridine uptake was noted in all cases exposed to bryostatin 1 compared with control cultures, which began at day 1 and peaked at day 2 or 3 of treatment (Figs 2 and 5A). The mean percentage increases in 3H-uridine uptake of the population as a whole (cases 2 to 9) caused by the inducers were as follows: bryostatin 1 v medium (182% ± 94%); bryostatin 1 + A23187 v medium (587% ± 448%); bryostatin 1 + A23187 v bryostatin 1 (134% ± 107%).

Immunoglobulin production. The terminal stage of B-cell differentiation are antibody-forming cells. To evaluate whether bryostatin 1 could mediate terminal B-cell maturation, the Ig present in the culture wells was quantified using a specific ELISA. After 24 hours an increase in the values for Ig was observed in all patients treated with bryostatin 1 (Figs 2 and 5B). In all cases, the type of Ig produced (IgM v IgG and kappa v lambda light chain) was examined; the isotype of the analyzed Ig corresponded to that detected on the cell surface or in the cytoplasm by immunophenotypical staining.
BRYOSTATIN INDUCES B-CLL DIFFERENTIATION

Fig 3. Phase photomicrograph of B-CLL cells in culture (patient no. 5). Control and treated cells were photomicrographed through an inverted microscope with phase-contrast illumination after three days of culture. (A) Control: cells did not adhere or aggregate; (B) bryostatin 1: clustering in densely packed clumps and adherence of single cells with cytoplasmic extensions; (C) TPA: same as bryostatin 1, but larger, more numerous aggregates; (D) TPA + bryostatin: similar to TPA or bryostatin 1 alone; (E) TPA + A23187: smaller, less densely packed clumps, but more numerous than with the single inducers; (F) bryostatin 1 + A23187: similar to TPA + A23187. Concentrations of inducers used: TPA (10^-8 mol/L); A23187 (7.5 x 10^-7 mol/L); bryostatin 1 (10^-6 mol/L). Original magnification × 25. Identical results were found in all cases.

(Table 2) and the type of Ig produced was exclusively monoclonal and monotypic. The mean percentage increases in IgM production of cases 3 to 9 together caused by the biomodulators were as follows: bryostatin 1 v medium (438% ± 543%); bryostatin 1 + A23187 v medium (699% ± 811%); bryostatin 1 + A23187 v bryostatin 1 (51% ± 41%).

Interaction with calcium ionophore. Previously, we showed that addition of the calcium ionophore A23187 to CLL cells cultured with TPA had an additive or even synergistic effect on induction of differentiation.\(^7\) We studied whether A23187 could likewise potentiate bryostatin 1-promoted activation and differentiation of CLL cells.

The results for \(^3\)H-uridine uptake (RNA synthesis) and Ig production (final maturation), which are summarized in Fig 5, indicate that A23187 clearly increased the effect of bryostatin 1 in an additive or synergistic fashion in all cases tested. No increase in \(^3\)H-thymidine incorporation could be
triggered by the treatment with both A23187 and bryostatin 1 compared with the application of either inducer alone. The cells stimulated with both reagents clustered; these aggregates were far more numerous, but smaller and less tightly knit than the bryostatin 1-induced clusters (Fig 3F). Morphologically, the cells resembled plasmacytoid cells being large, round or oval, with basophilic cytoplasm, eccentrically located nuclei, and clear, Hof-like perinuclear zones (Fig 4F).

Comparison with TPA-induced effects. In order to compare the responses triggered by bryostatin 1 and phorbol ester, all samples were also treated with the phorbol ester TPA and the following two combinations of reagents: TPA + A23187 and TPA + bryostatin 1. TPA and bryostatin 1 alone induced similar effects regarding adherence and clustering of the cells and morphological changes (Figs 3B and C and 4B and C). In all cases, however, bryostatin 1 was less effective than TPA at inducing 3H-uridine uptake and Ig production.

The additive or synergistic effects of the dual stimulation with PKC activators plus calcium ionophore were similar for the combinations TPA + A23187 and bryostatin 1 +
BRYOSTATIN INDUCES B-CLL DIFFERENTIATION

Fig 5. Response to treatment with bryostatin 1 or the double-stimulus of bryostatin 1 + A23187 in cells from different B-CLL patients as measured by RNA synthesis at day 3 (A) and Ig production after six days of incubation (B). Cells were treated under identical experimental conditions with 10⁻⁸ mol/L bryostatin 1 or bryostatin 1 + A23187 (7.5 × 10⁻⁷ mol/L). Not shown are the values for A23187-treatment as these are similar or identical to the control figures. Note the pronounced heterogeneity of the effects of the inducers in different patients. 1. Value below sensitivity of assay; 2. not done.

A23187 in terms of cell aggregation (Fig 3E and F), morphological maturation (Fig 4E and F), RNA synthesis and Ig production.

Modulation of TPA-induced differentiation. To assess if bryostatin 1 could have a potentiating or inhibiting effect on TPA-induced differentiation, B-CLL cells were cultured in the presence of both reagents. Little or no effect on the TPA-mediated responses were observed regarding the morphological features when compared with the results from either inducer alone (Figs 3D and 4D).

However, RNA synthesis and Ig production induced by TPA were significantly inhibited by the simultaneous presence of 10⁻⁷ mol/L bryostatin 1 (Fig 6). A mean reduction of 46% (±19%; range, 22% to 76%) of TPA-mediated ³H-uridine uptake was observed. Bryostatin 1 also caused a blockade of the TPA induction of Ig production: a mean decrease of 76% (±15%; range, 51% to 91%). 10⁻⁴ mol/L bryostatin 1 was less effective (Fig 6).

Heterogeneity of responses. While the extent of differentiation as evidenced by morphological appearance was similar in all cases, a striking heterogeneity between all CLL cultures was seen for the quantifiable parameters of ³H-uridine uptake and Ig production (Fig 5). No correlation between responsiveness to the inductive signals and clinical
(stage of disease, age of patient, treatment) or laboratory data (WBC, surface marker phenotype) could be established.

DISCUSSION

In response to in vitro treatment with the phorbol ester TPA, human B-CLL cells acquire distinct morphological and cytochemical changes, produce and secrete monotypic Ig, and express a variety of activation- and differentiation-associated surface antigens. The responses elicited by TPA are due to activation of PKC, which in a variety of other model systems causes different biological effects dependent on the type of target cell. While the many aspects of these classical PKC activators, phorbol esters, have been studied extensively, the bryostatins represent a newly discovered class of PKC modulators. A number of substantial differences between the effects mediated by either bryostatins or phorbol esters have been reported. In contrast to phorbol esters, bryostatins lack tumor-promoting activity, but demonstrate antineoplastic effects. Because these compounds displayed several immunomodulating properties, it has been suggested that bryostatins might possibly represent useful biological response modifiers. In this context, the present studies were designed to analyze the differentiation-inducing capacities of one of the bryostatins, namely bryostatin 1, and to test whether the two PKC activators, TPA and bryostatin 1, confer similar or different effects on B-CLL cells.

The results presented here demonstrate that the stimulatory and differentiation-inducing effects of bryostatin 1 and TPA on B-CLL cells were comparable, albeit TPA appeared
to be more effective for the promotion of RNA synthesis and Ig production. Both biomodulators effectively induced differentiation while the cells remained proliferatively inert (except for one patient). As previously described for the two-signal treatment of TPA plus A23187, the combination of bryostatin 1 and this calcium ionophore also potentiated the differentiation of B-CLL cells compared with the use of either inducer alone. Not only did the double stimulus induce higher amounts of RNA and Ig than the single compounds, but also the morphological changes triggered were more compatible with differentiation toward plasmacytoid cells.

Therefore, in analogy to previously reported conclusions, the use of PKC activator plus calcium ionophore might convey a more physiological signal that is followed by adequate differentiative changes while TPA or bryostatin alone trigger maturation along a sideline away from the "normal" developmental pathway: TPA-treated B-CLL cells displayed, at least in part, hairy cell-like features. The additional signal mediated by the calcium ionophore might be required in order to initiate a differentiation process that resembles the one occurring under physiological conditions where the triggering of surface receptors then elicits activation of both second messengers, which subsequently transfer the signal from the cell membrane to various cellular sites.

The reason for the differing effectiveness of bryostatin 1 and TPA to mediate induction of RNA synthesis and Ig production are not known. Using another experimental system, Hess et al. speculated that in the light of the recent discovery of various PKC isoenzymes one or more PKC isoforms might be stimulated differentially by the two PKC agonists causing different, possibly even antagonistic effects. In fact, the results here show that bryostatin 1 can partially antagonize the differentiative response of B-CLL cells induced by TPA. Similar results have been reported by other investigators using T cells or leukemia cell lines. In this regard, an altered PKC substrate specificity has been proposed to explain differences and antagonism in biological responses seen in bryostatin 1- and TPA-treated cells. Recent studies have indicated that bryostatin 1 stimulates both cytoplasmic and nuclear PKC activity in the myeloid leukemia cell line HL-60, whereas TPA activates only the cytoplasmic form. Clearly, further biochemical studies are warranted to analyze in detail possible differences in the mode of action of bryostatin 1 and TPA.

Bryostatin 1 could also have effects on cellular systems other than PKC to account for its mechanism of action, eg, the cAMP pathway. Further experiments have to be performed to invoke a specific mechanism to the exclusion of any others.

A striking patient-to-patient variation for the data on the induced RNA synthesis and Ig production was seen among our nine cases of B-CLL. Such pronounced heterogeneity in the response of CLL cells to phorbol ester and other stimulators has been documented previously. We could not establish any link between clinical and laboratory characteristics of the cells and the extent of their in vitro response to the inducers. Except for one patient, no proliferative activity could be induced by TPA or other biomodulators in our present or previous series of cases. Without apparent reasons, this single patient showed definite evidence for proliferation in the form of mitotic figures, positivity for the Ki-67 antigen, and incorporation of BrdU, which were studied at the single cell level. The fact that this case was exceptional questions the relevance of singling out individual patients whose cells were responsive to in vitro treatment while the majority of cases are not responsive, and of using these examples as representative models for B-CLL activation and differentiation.

In summary, the data presented here demonstrate that the PKC activator bryostatin 1 can induce differentiation of B-CLL cells paralleling the known effects elicited by the classical PKC stimulator TPA. The ability of the dual signals of bryostatin 1 plus the calcium ionophore A23187 to promote the final maturation of B-CLL cells into antibody-forming, plasmacytoid cells is similar to the capacity of TPA plus A23187 to mediate this response. Therefore, experimentally, phorbol esters can be substituted by bryostatins to dissect the various intracellular activation pathways and signal transduction components which might be stimulated by different isoenzymes of PKC; the understanding of heterogeneity in the PKC pathway is of great conceptual importance. Bryostatin 1, which itself lacks tumor-promoting activity, can also be antagonistic to the tumor-promoter TPA.

Finally, the partial integrity of the inositol phospholipid signal transduction pathway (downstream from PKC) seen in our study confirms that the defect, ie, unresponsiveness to adequate inductive signals, most likely resides in a proximal component of the signaling system, possibly as a lack or dysfunction of signal receptors, blockade of the transducing machinery, or uncoupling of functional elements. Future attention will be focused on the role of G protein regulation of receptor signaling and its possible dysfunction in B-CLL cells.

ACKNOWLEDGMENT

For necessary assistance, we thank Drs Peter Blumberg, Cherry L. Herald, John E. Leet, and Yoshiaki Kamano.

REFERENCES

7. Drexler HG, Brenner MK, Coustan-Smith E, Wickrema-

29. Perri RT, Kay NE: Malignant chronic lymphocytic leukemia B cells express interleukin 2 receptors but fail to respond to interleukin 2's proliferative signal. Leukemia 1:127, 1987

33. Campana D, Janossy G: Leukemia diagnosis and testing of complement-fixing antibodies for bone marrow purging in ALL. Blood 68:1264, 1986

42. Deegan MJ, Maeda K: Differentiation of chronic lympho-
BRYOSTATIN INDUCES B-CLL DIFFERENTIATION

...cytic leukemia cells after in vitro treatment with Epstein-Barr virus or phorbol ester. I. Immunologic and morphologic studies. Am J Hematol 17:335, 1984

Bryostatin 1 induces differentiation of B-chronic lymphocytic leukemia cells

HG Drexler, SM Gignac, RA Jones, CS Scott, GR Pettit and AV Hoffbrand