Monocytoid Differentiation of Freshly Isolated Human Myeloid Leukemia Cells and HL-60 Cells Induced by the Glutamine Antagonist Acivicin

By Kim E. Nichols, Shobha R. Chitneni, Joseph O. Moore, and J. Brice Weinberg

Previously we showed that starvation of HL-60 promyelocytic leukemia cells for a single essential amino acid induced irreversible differentiation into more mature monocyte-like cells. Although not an essential amino acid, glutamine is important in the growth of normal and neoplastic cells. The glutamine analogue, αS,S-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin) inhibits several glutamine-utilizing enzymes and therefore depletes cells of certain metabolic end products. The current study was designed to examine in vitro the effects of acivicin on growth and differentiation of several established human myeloid leukemia cell lines, including the HL-60 cell line, and of freshly isolated cells from patients with acute nonlymphocytic leukemia (ANLL). Four-day culture of HL-60 cells with acivicin at concentrations of 0.1 to 10.0 μg/mL (0.56 to 56 nmol/L) decreased cell growth by 33% to 88% as compared with untreated control cells. Viability of cells was >92% for untreated cells and 93% to 41% for acivicin-treated cells. Cells treated with acivicin differentiated along a monocytic pathway as shown by increased H2O2 production and α-naphthyl butyrate esterase (NSE) activity against murine L1210 leukemia cells, and in vivo experiments it inhibits growth of human breast and lung tumor xenografts in athymic mice. Early phase I and II trials using acivicin have shown some benefit in the treatment of several solid tumor types (eg, colon, breast, and ovarian carcinomas, and melanoma). In a phase I-II trial of acivicin, two of six adult patients with relapsed or refractory acute leukemia had initial cytoreduction of leukemia cells, but no partial or complete remissions were induced. The purposes of our investigations were several-fold: to examine the effects of acivicin on growth and differentiation of the HL-60 promyelocytic leukemia cell line and other myeloid leukemia cell lines, and to assess whether acivicin has in vitro antiproliferative and differentiating activity against freshly isolated peripheral blood leukemia cells from ANLL patients.

Activity of acivicin was dose dependent, and was irreversible. Changes in H2O2 production and NSE content were partially abrogated by co-culture with 10 mmol/L exogenous cytidine and guanosine but not by co-culture with other nucleosides or glutamine. At these concentrations of acivicin, differentiation was associated with expression of the N-formyl-methyl-leucyl-phenylalanine-receptor (FMLP-R) on 8% to 29% of cells as compared with 8% for control cells. Acivicin potentiated the differentiating effects of interferon-γ, tumor necrosis factor, dihydroxyvitamin D3, dimethylsulfoxide, and retinoic acid. Culture of cells from the U937 (monoblastic), K562 (erythroleukemia), and KG-1 (myeloblastic) cell lines resulted in decreased growth and viability, but not consistently in differentiation. Acivicin decreased survival of freshly isolated ANLL cells and increased their H2O2 production and NSE content. These results suggest that the glutamine analogue acivicin may be useful as a differentiating agent with antileukemia activity in patients with ANLL.

From the VA and Duke University Medical Centers, Division of Hematology/Oncology, Durham, NC.

Supported by the VA, the James Swiger Hematology Research Fund, and Grants No. CA09307, AI23308, and AR39162 from the National Institutes of Health, Bethesda, MD.

Address reprint requests to J. Brice Weinberg, MD, VA Medical Center (151G), Hematology/Oncology, 508 Fulton St, Durham, NC 27705.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1989 by Grune & Stratton, Inc.

From www.bloodjournal.org by guest on September 14, 2017. For personal use only.
for α-naphthyl butyrate esterase (NSE) at the start of all experiments.

Culture conditions. For experiments, cells were recovered from routine growth medium by centrifugation, washed twice with phosphate-buffered saline (PBS), and resuspended at a density of 2.5 × 10⁶ cells/mL in RPMI 1640 supplemented as in routine cultures. Acivicin, diluted in distilled water at a stock concentration of 4 mg/mL, was added in appropriate amounts at initiation of all cultures. Cultures were maintained at 37°C with 100% humidity and 5% CO₂ for one to seven days. Before all assays, cells were harvested by centrifugation and washed three times with PBS, and cell number and viability were determined by exclusion of 0.1% trypan blue (in PBS).

Isolation and culture of peripheral blood leukocytes (PBLs). PBLs were isolated from normal controls and from ANLL patients (with appropriate consent according to protocols approved by the Duke and VA Institutional Review Boards) by Ficoll-Hypaque gradient sedimentation as previously described. After centrifugation, cells were washed three times with PBS and assessed for cell number and viability. When >50% were blasts, the cells were cultured in RPMI 1640 supplemented with 10% FBS and penicillin/streptomycin as described. Culture conditions were identical to those described for the leukemia cell lines except that in these experiments, final acivicin concentrations were 0, 10, 100 μg/mL.

Purification of peripheral blood monocytes, lymphocytes, and peritoneal macrophages. For certain experiments, mononuclear cells were isolated from populations of lymphocytes and monocytes by Percoll gradient sedimentation as previously described. After Percoll sedimentation, cells were washed three times with PBS and were assessed for cell number and viability. Peritoneal macrophages were isolated from peritoneal fluid by Ficoll-Hypaque gradient sedimentation as previously described. Before culture, cells were washed twice with medium, allowed to adhere to microtiter plates in serum-free Dulbecco's modified Eagle's medium (GIBCO) for 1 hour, and were again washed three times with PBS.

Hydrogen peroxide (H₂O₂) production. Cells were assayed for the ability to produce H₂O₂ when 200 mmol/L phorbol myristate acetate was added by using horseradish peroxidase, phenol red, and a microtiter plate reader (spectrophotometer) as described previously. All samples were run in triplicate.

Morphology and NSE content. Cells were collected onto glass slides using a cytocentrifuge (Shandon Southern, Astmoor, England). When dry, slides were stained with Wright's and NSE stains as described previously. All slides were examined and counted in a blinded fashion.

Measurement of chemotactic peptide receptor expression. The expression of chemotactic peptide receptors on HL-60 cells was determined by binding studies using the fluorescent hexapeptide N-formyl-norleucyl-phenylalanin-norleucyl-tyrosyl-lysine (FNLPNTL) (Molecular Probes, Junction City, OR) as previously described. Cells (100 μl) at a concentration of 20 × 10⁶ cells/mL were incubated with 10⁻⁷ mol/L FNLPNTL for one minute at 37°C, and then the cells were fixed by adding 100 μL cold 6.4% paraformaldehyde in PBS. Cells were incubated for 30 minutes more on ice and then were washed twice with PBS/0.1% bovine serum albumin (Sigma Chemical, St Louis) and suspended in 1 mL of the same buffer. Cells were analyzed for fluorescence with an Epics V FACS (Coulter Electronics, Hialeah, FL). Forward angle and perpendicular light scatter were used to pregate cell populations to exclude cell debris and nonviable cells from analysis. For each sample, cells were analyzed for percentage of positive cells and for mean fluorescence intensity.

Assays for DNA, RNA, and protein synthesis. Cells were cultured with appropriate additives for four days as previously described. They were then washed twice with PBS, counted and resuspended at a concentration of 1 × 10⁶ viable cells per microtiter well in 200 μL medium including all additives. Then either 1 μCi (methyl-³)thymidine (2 Ci/mmol, NEN, Boston), (5,6-⁴)uridine (2 Ci/mmol, Amersham, Arlington Heights, IL), or L-(4,5-³)leucine (57 Ci/mmol, Amersham) was added to each well. After 18, 18, or four hours of culture, respectively, cells were harvested onto glass fiber filter discs with a multiple automated sample harvester (Belloco, Vineyard, NJ) and filter discs were analyzed for radiation content as described previously.

Materials. Purified recombinant interferon-γ (IFN-γ) was obtained from Genentech (San Francisco), and purified TNF was obtained from Cetus (Emeryville, CA). Acivicin was from Upjohn (Kalamazoo, MI). All other reagents, unless otherwise specified, were purchased from Sigma.

RESULTS

Cell growth. When grown in the presence of acivicin, HL-60 cells show a decrease in proliferation and viability which occurs in a time- and dose-dependent fashion. As shown in Fig 1, this decrease in proliferation is gradual, with maximal effects at days 4 to 5. In general, after four-day culture with acivicin (0.1, 1.0, 10 μg/mL), cell number recovered was 67%, 23%, and 12% of control cell number (with control cells having increased 150% to 250% from initial seed during this culture period). Viability of cells was >92% for control cells and 93%, 69%, and 41% for acivicin-treated cells.

Cell morphology and cytochemistry. Examination of Wright's-stained cytospin preparations of HL-60 cells cultured with acivicin showed cells that were larger and more vacuolated and that had more ruffled membranes than control cells. These changes were comparable to those observed in cells cultured in amino acid-deficient medium that we have described previously. The change in morphology suggested monocytic differentiation; however, these cells were not adherent to the plastic culture dishes as are more mature monocytes or HL-60 cells induced to differentiate

Fig 1. Growth curves of HL-60 cells in medium containing different concentrations of acivicin. Viable cell number is expressed as total viable cells per culture dish. Results are from one experiment representative of five experiments.
into monocytes by phorbol diesters. When we assessed for NSE content, which is useful as a marker of monocytic differentiation, we found that culture with acivicin resulted in increased expression of NSE. As shown in Fig 2, acivicin-induced NSE content was dose dependent, with 10 μg/mL acivicin inducing maximal NSE content. Parallel experiments showed that the increase in NSE content was time dependent. When analyzed after four-day culture with 0, 0.1, 1.0, and 10 μg/mL acivicin, 2%, 6%, 42%, and 56% of cells were positive for NSE. To determine the reversibility of the differentiation, cells were cultured for four days with acivicin, washed twice in PBS to remove the drug, and recaptured for an additional five days. NSE content was unchanged, suggesting that this process was irreversible (data not shown).

Peroxide production. Differentiation of HL-60 cells into more mature myeloid or monocytic cells is characterized by acquisition of the ability to produce reactive oxygen species. As with NSE, acivicin-treated cells showed an increase in H$_2$O$_2$ production that was comparable in time and dose dependence (Fig 2) and irreversibility. At day 4 of culture, cells grown in the presence of 0, 0.1, 1, and 10 μg/mL acivicin produced 13.8, 112, and 264 nmol/h/10 x 106 cells H$_2$O$_2$ when stimulated with phorbol myristate acetate (PMA).

Reversibility of differentiation by addition of nucleo-
Addition of exogenous cytidine and guanosine prevents differentiation of HL-60 cells. Cells were cultured with acivicin (5 µg/mL) and nucleosides (10 mmol/L) for four days and then were harvested and assayed for growth and differentiation. Values are from one experiment representative of two experiments.

Expression of the chemotactic peptide receptor. We showed previously that IFN-γ, tumor necrosis factor (TNF), or dimethylsulfoxide (DMSO)-induced differentiation of HL-60 cells is characterized by acquisition of FMLP-R. In addition, expression of this receptor is associated with the ability of the cells to polymerize actin, which is believed to be important in the processes of chemotaxis and phagocytosis. Acivicin-treated cells demonstrated an increase in the percentage of cells positive for FMLP-R as well as an increase in mean fluorescence intensity (density of receptor expressed/cell) (Fig 3).

Table 1. Prevention of Differentiation by Addition of Exogenous Nucleosides

<table>
<thead>
<tr>
<th>Cell Number</th>
<th>Viability (% Viable)</th>
<th>H₂O₂ (nmol/h)</th>
<th>NSE (% +)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>29</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>Adenosine</td>
<td>26</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td>Cytidine</td>
<td>26</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td>Guanosine</td>
<td>17</td>
<td>59</td>
<td>98</td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>21</td>
<td>72</td>
<td>95</td>
</tr>
<tr>
<td>Thymidine</td>
<td>19</td>
<td>66</td>
<td>97</td>
</tr>
<tr>
<td>Uridine</td>
<td>24</td>
<td>83</td>
<td>98</td>
</tr>
<tr>
<td>Cytidine + guanosine</td>
<td>14</td>
<td>48</td>
<td>99</td>
</tr>
<tr>
<td>Acivicin</td>
<td>5</td>
<td>17</td>
<td>47</td>
</tr>
<tr>
<td>Acivicin + adenosine</td>
<td>2</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Acivicin + cytidine</td>
<td>6</td>
<td>21</td>
<td>52</td>
</tr>
<tr>
<td>Acivicin + guanosine</td>
<td>11</td>
<td>38</td>
<td>91</td>
</tr>
<tr>
<td>Acivicin + hypoxanthine</td>
<td>2</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>Acivicin + thymidine</td>
<td>3</td>
<td>10</td>
<td>52</td>
</tr>
<tr>
<td>Acivicin + uridine</td>
<td>5</td>
<td>17</td>
<td>58</td>
</tr>
<tr>
<td>Acivicin + cytidine + guanosine</td>
<td>10</td>
<td>34</td>
<td>87</td>
</tr>
</tbody>
</table>

Addition of exogenous cytidine and guanosine prevents differentiation of HL-60 cells. Cells were cultured with acivicin (5 µg/mL) and nucleosides (10 mmol/L) for four days and then were harvested and assayed for growth and differentiation. Values are from one experiment representative of two experiments.

Fig 3. Effects of acivicin on expression of the HL-60 FMLP-R. Cells were cultured with varying concentrations of acivicin and then were harvested and assayed for expression of the FMLP-R. Results are from one experiment representative of three experiments.
Measurement of DNA, RNA, and protein synthesis. To characterize further the events involved in differentiation of HL-60 cells after incubation with acivicin, we measured the level of DNA, RNA, and protein synthesis in control and acivicin-treated cells. Cells cultured with 0.1, 1.0, and 10 μg/mL acivicin had DNA synthesis that was 85%, 20%, and 12% of control untreated cells. RNA synthesis was 86%, 66%, and 9% of control. Protein synthesis also decreased to 47%, 26%, and 19% of control.

Cooperative effects of acivicin and other differentiating agents. TNF, IFN-γ, dihydroxyvitamin D3 (D3), and phorbol diesters induce maturation of HL-60 cells into monocyte/macrophagelike cells. In contrast, DMSO, retinoic acid (RA), and dibutyryl CAMP induce maturation of HL-60 cells along a myeloid pathway. To determine whether culture with acivicin would have any effects on differentiation in the presence of other inducing agents, cells were either co-cultured with acivicin (5 μg/mL) and the inducer for four days or were preincubated with acivicin (5 μg/mL) for four days, washed free of acivicin, and recaptured for an additional four or five days with an inducer, and then were analyzed for differentiation. As shown in Fig 4, acivicin augmented H2O2 production induced by IFN-γ, TNF, D3, RA, and DMSO by 5.3-, 3.1-, 6.3-, 2.2-, and 4.4-fold, respectively. Acivicin augmented NSE content induced by IFN-γ, TNF, and D3 by 3.3-, 5.5-, and 4.1-fold.

Fig 4. Potentiation of the effects of acivicin and other inducers of differentiation. HL-60 cells were co-cultured with 5 μg/mL acivicin and an inducer for four days and then were harvested and assayed for either NSE content (A) or for H2O2 production (B). IFN-γ and TNF were added at a final concentration of 100 U/mL. D3 was added at 10 nmol/L, RA at 1 μmol/L, and DMSO at 1.2% (vol/vol). Values are from one experiment representative of two experiments.
respective. When the cells were cultured with acivicin and DMSO or RA, two agents which induce neurophilic differentiation of HL-60 cells, there was no enhancement of the relatively monocytic leukemia cell lines, cells from the KG-1, U937, and K562 cell lines were cultured with acivicin and assayed for cell number, viability, H2O2 production, and NSE content. For K562, maturation along the erythrocytic pathway was evaluated by examination for changes in intracellular hemoglobin content as previously described.34 As shown in Table 2, culture with acivicin resulted in decreased cell proliferation and viability for all cell lines examined. However, culture with acivicin did not consistently lead to differentiation of these other cell lines.

Differentiation of other myeloid leukemia cell lines. To determine whether acivicin was capable of differentiating other myeloid leukemia cell lines, cells from the KG-1, U937, and K562 cell lines were cultured with acivicin and assayed for cell number, viability, H2O2 production, and NSE content. For K562, maturation along the erythrocytic pathway was evaluated by examination for changes in intracellular hemoglobin content as previously described.34 As shown in Table 2, culture with acivicin resulted in decreased cell proliferation and viability for all cell lines examined. However, culture with acivicin did not consistently lead to differentiation of these other cell lines.

Differentiation of ANLL patient samples. To examine the effects of acivicin on the survival and differentiation of freshly isolated ANLL cells, cells were incubated for four days with 0, 1, 10, and 100 µg/mL acivicin and then assayed for cell number, viability, morphology, H2O2 production and NSE content. Results are summarized in Fig 5A through D. At these doses, acivicin decreased cell survival in ten of ten cases with mean reductions in cell number of 39%, 49%, and 54%, respectively, over control cells. Cell viability also decreased in ten of ten cases with reductions (Fig 5B). Mean PMA-induced H2O2 production by ANLL cells was 72, 130, 120, and 150 nmol/h/10 x 10⁶ cells for control and acivicin-treated cells (1, 10, and 100 µg/mL), with enhancement of H2O2 production in six of ten cases. At the same doses of acivicin, NSE content increased by 2.4-, 3.0-, and 3.2-fold over control cells, with increased NSE content in five of ten cases. Despite changes in H2O2 production and NSE content, morphologic changes on Wright's-stained cells consistent with differentiation or maturation were not always observed.

Effects of acivicin on normal PBLS and peritoneal macrophages. Parallel experiments were performed to determine the effects of acivicin on proliferation and function of either peripheral blood lymphocytes or peripheral blood monocytes/peritoneal macrophages. These experiments demonstrated that at concentrations of 0.1, 1.0, and 10 µg/mL acivicin inhibited phytohemagglutinin-induced proliferation of normal lymphocytes by 3%, 90%, and 99% over untreated cells. Culture with acivicin at these doses had no effect on H2O2 generation by either peripheral blood monocytes or peritoneal macrophages (data not shown).

DISCUSSION

Because of the integral role that glutamine plays in intermediary metabolism of neoplastic cells, glutamine analogues, antimetabolites, and glutamine-depleting enzymes have been a focus of chemotherapy regimens for several years.4 Glutamine is important in the production of several amino acids, nucleotides, and complex polysaccharides. In neoplastic or transformed cells, glutamine is particularly important in glutamine-dependent synthesis of purines and pyrimidines and is therefore closely linked to DNA synthesis and cell replication. Among the enzymes of significance are phosphoribosyl pyrophosphate amidotransferase, carbamoylphosphate synthetase, GMP synthetase, and CTP synthetase, all of which are rate-limiting enzymes for either purine or pyrimidine synthesis and, more specifically, for synthesis of CTP or GTP.35,36

As demonstrated by Weber, many of the enzymes involved in purine and pyrimidine metabolism have increased activity in a large number of animal and human tumor cells. The degree of increased activity correlates well with tumor cell growth rate, and the common pattern of enzymic changes is believed to reflect a pattern of gene expression which confers selective reproductive advantage.38 In association with these changes, intracellular pools of glutamine are depleted in tumor cells as compared with normal controls. Further depletion of the glutamine pool by glutamine antimetabolites or glutamine-degrading enzymes is believed to provide a strategic approach in chemotherapy.

A wide variety of glutamine analogues is available for investigation, including azaserine, 6-diazo-5-oxo-L-norleucine, and acivicin. Our studies were designed to examine in vitro the effects of acivicin on growth and differentiation of the promyelocytic leukemia cell line HL-60 and on survival and differentiation of freshly isolated ANLL cells. We have

Table 2. Effects of Acivicin on Growth and Differentiation of Other Myeloid Leukemia Cell Lines

<table>
<thead>
<tr>
<th>Variable</th>
<th>Acivicin (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Cell number (millions)</td>
<td></td>
</tr>
<tr>
<td>U937</td>
<td>51</td>
</tr>
<tr>
<td>K562</td>
<td>20</td>
</tr>
<tr>
<td>KG-1</td>
<td>33</td>
</tr>
<tr>
<td>Viability (viable, %)</td>
<td></td>
</tr>
<tr>
<td>U937</td>
<td>99</td>
</tr>
<tr>
<td>K562</td>
<td>62</td>
</tr>
<tr>
<td>KG-1</td>
<td>98</td>
</tr>
<tr>
<td>H2O2 (nmol/h)</td>
<td></td>
</tr>
<tr>
<td>U937</td>
<td>0</td>
</tr>
<tr>
<td>K562</td>
<td>0</td>
</tr>
<tr>
<td>KG-1</td>
<td>0</td>
</tr>
<tr>
<td>NSE (cells, % positive)</td>
<td></td>
</tr>
<tr>
<td>U937</td>
<td>NA</td>
</tr>
<tr>
<td>K562</td>
<td>7</td>
</tr>
<tr>
<td>KG-1</td>
<td>NA</td>
</tr>
<tr>
<td>Benzidine (cells, % positive)</td>
<td></td>
</tr>
<tr>
<td>U937</td>
<td>NA</td>
</tr>
<tr>
<td>K562</td>
<td>0</td>
</tr>
<tr>
<td>KG-1</td>
<td>NA</td>
</tr>
</tbody>
</table>

Abbreviation: NA, not applicable.

Acivicin decreases growth and viability of other myeloid leukemia cell lines, but does not lead to changes in H2O2 production or NSE content. Cells (10 x 10⁶) were cultured with acivicin for four days and then were harvested and assayed for changes in growth and differentiation. Results are from one experiment per cell line representative of three experiments for U937 and two experiments each for K562 or KG-1.
shown that acivicin inhibits growth of HL-60 cells and increases cell death. This agrees with the work of other investigators using other malignant cells. With comparable concentrations of acivicin, Zhen et al demonstrated growth inhibition of the rat hepatoma cell line 3924A.29 Dranoff et al showed decreased proliferation of several human glioblastoma and medulloblastoma cell lines with acivicin.40 Fischer et al also inhibited growth of the human colon carcinoma cell line, VACO5.41 In addition to growth inhibition, we demonstrated that acivicin induces morphologic and functional differentiation of HL-60 cells and freshly isolated ANLL cells into monocytelike cells capable of increased H\textsubscript{2}O\textsubscript{2} production and characterized by increased NSE content and increased expression of FMLP-R. As with many other

Fig 5. Effect of acivicin on growth and differentiation of ANLL cells. Freshly isolated ANLL cells were cultured with different doses of acivicin for four days and then were harvested and assayed for cell growth (A), viability (B), H\textsubscript{2}O\textsubscript{2} production (C), and NSE content (D). Values are either from ten experiments (A through C) or six experiments (D).
gradual, requiring four to seven days of culture, is time and
dose dependent and irreversible. We demonstrated compara-
table effects of 6-diazo-5-oxo-L-norleucine on HL-60 cells
(data not shown).

Acivicin-induced differentiation is accompanied by
decreased DNA, RNA, and protein synthesis. Our exper-
iments, however, did not address whether decreased DNA,
RNA, and protein synthesis are a direct metabolic effect of
acivicin or are secondary to terminal differentiation of cells.
These findings are similar to those of other investigators who
have differentiated HL-60 cells with other inducers. The
broad spectrum of enzymes and cellular processes affected
by this drug make it an attractive candidate as an antileu-
kemia agent.

Understanding of the molecular events involved in differ-
etiation of HL-60 cells by conventional differentiating
agents or by newer agents such as acivicin is incomplete.
Some researchers have proposed that alterations in DNA
synthesis with subsequent alteration in gene product expres-
sion may be important. Yen et al showed that PMA-induced
monocytic differentiation of HL-60 cells is enhanced by
interruption of DNA synthesis by hydroxyurea. Although not well understood, inhibition of DNA
synthesis during differentiation may be associated with
alterations of protooncogene or growth/differentiation factor
expression or both. McCachren et al showed that during
dibutyryl-CAMP–induced differentiation of HL-60 cells,
there is interruption of transcription and reduced expression
of the c-myc oncogene.

Other investigators have suggested that alterations in
intracellular pools of CDP and GTP are closely linked to the
terminal differentiation of HL-60 cells. Wright et al showed
that culture of HL-60 cells with tiazofurin, an inhibitor of IMP dehydrogenase, results in decreased synthe-
sis of GTP as well as in terminal differentiation. Because
acivicin also decreases cellular pools of guanosine nucleo-
tides, this may reflect one of its roles during differentiation.
In our experiments, differentiation was partially prevented
by addition of exogenous guanosine and cytidine, and not by
either nucleoside alone or by addition of other nucleosides.
This has been demonstrated in other studies and suggests
that the pyrimidine CTP is also important in the process of
dermatination. Additional experiments using dipyrida-
mole to inhibit uptake of exogenous nucleosides resulted in
increased cytotoxic effects of acivicin and prevented reversal
of differentiation by addition of cytidine and guanosine (data
not shown).

In our studies, we also show that acivicin has antiprolifera-
tive effects against the U937, K562, and KG-1 myeloid
leukemia cell lines and antileukemia and differentiating
effects on freshly isolated peripheral blood ANLL cells.
Parallel experiments demonstrated that acivicin has potent
effects on inhibiting phytohemagglutinin-stimulated lympho-
cyte proliferation, but did not affect monocyte or macro-
phage H2O2 production.

Because acivicin causes inhibition of neoplastic cell repli-
cation by decreasing CTP and GTP synthesis, synergism
might be expected with other agents that block DNA synthe-
sis. Weber et al showed synergistic action of acivicin with
actinomycin D as measured by growth inhibition of the rat
hepatoma cell line 3924A and by a decrease in clonogenic
units. Use of acivicin in combination with Acinetobacter
t-glutaminase-l-asparaginase by Holenberg et al showed
increased antiproliferative effects in vivo against murine
L1210 leukemia, murine Erlich ascites tumor cells, and
murine P388 tumor cells. Other studies investigating
combinations of acivicin and purine antimetabolites (6TG),
pyrimidine antimetabolites (N-phosphonacetyl-L-aspartic
acid [PALA], 5-fluorouracil, or cytosine arabinoside) and
the salvage pathway inhibitor dipyridamole have all shown
additive or synergistic effects. Our experiments using acivi-
cin in conjunction with the differentiating agents TNF,
IFN-γ, and D3 have shown additive effects and suggest other
possible combinations with antileukemia and differentiating
effects.

Our data suggest that the glutamine analogue acivicin
may be important in inducing differentiation of myeloid
leukemia cells. Further research with this agent may provide
information concerning the molecular events involved in
growth and differentiation of normal and neoplastic cells.
Clinically, this agent may prove useful either alone or in
combination with other agents in treating ANLL patients,
with the ultimate goals of treatment being to decrease
leukemia cell proliferation and to induce differentiation of
leukemia cells into more mature, functional monocyte-like
cells.

ACKNOWLEDGMENT
We thank Elissa Doty and Nick Mason for excellent technical
assistance, and Drs Donald Granger, Henry Friedman, and Donald
Trump for helpful discussions.

REFERENCES

1. Gallagher RE, Collins SJ, Trujillo J, McCredie K, Ahern M,
Tsai S, Metzgar R, Aulakh G, Ting R, Ruscetti FW, Gallo RC:
Characterization of the continuous, differentiating myeloid cell line
(HL-60) from a patient with acute promyelocytic leukemia. Blood
54:713, 1979

2. Collins SJ: The HL-60 promyelocytic leukemia cell line:
Proliferation, differentiation, and cellular oncogene expression.
Blood 70:1233, 1987

induces monocytic differentiation of the human HL-60 myeloid

4. Eagle H, Oyama VI, Levy M, Horton CL, Fleischman R: The
growth response of mammalian cells in tissue culture to l-glutamine

5. Stadtman ER: A note on the significance of glutamine in
intermediary metabolism, in Prasiner S, Stadtman ER (eds): The
Enzymes of Glutamine Metabolism. San Diego, Academic, 1973, p1

6. Meister A: Catalytic mechanisms of glutamine synthetase:
Overview of glutamine metabolism, in Mora J, Palacios R (eds):
Glutamine Metabolism. San Diego, Academic, 1980, p1
Monocytoid differentiation of freshly isolated human myeloid leukemia cells and HL-60 cells induced by the glutamine antagonist acivicin

KE Nichols, SR Chitneni, JO Moore and JB Weinberg

Updated information and services can be found at:
http://www.bloodjournal.org/content/74/5/1728.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml