Evaluation of the Inhibition by Heparin and Hirudin of Coagulation Activation During r-tPA–Induced Thrombolysis

By Manouchehr Mirshahi, Jeannette Soria, Claudine Soria, Rene Faivre, He Lu, Michael Courtney, Carolyn Roitsch, Dominique Tripier, and Jacques P. Caen

Thrombin bound to a fibrin clot remains active and poorly accessible to heparin-AT III complex. During fibrinolysis, thrombin is released as thrombin-FDP complex and is inactivated by heparin-AT III. However, as successive fibrin layers are removed, inaccessible molecules of thrombin are exposed at the surface of the residual clot, possibly contributing to the occurrence during thrombolytic therapy of coagulation that is poorly controlled by heparin. We have investigated the accessibility of fibrin-bound thrombin to hirudin. The results clearly show that two recombinant hirudin variants neutralize thrombin both in solution and fibrin bound. Furthermore, we have found that in vitro models, hirudin present in the surrounding medium of a clot under lysis is more efficient than heparin in preventing the activation of coagulation. This observation suggests that hirudin may be effective in the prevention of the rethrombotic process frequently encountered during thrombolytic therapy.

© 1989 by Grune & Stratton, Inc.
Asserachrom fpa from Diagnostica Stago. Specific fibrin degrada-
tion products (FbDP) determination was performed by enzyme-
linked immunosorbent assay (ELISA) using a D neo monoclonal
anti-body (MoAb) as previously described.27

Protocols Used

Fibrin adsorption to polystyrene beads and quantitation of
thrombin on immobilized fibrin surface. This was per-
formed by the technique described by Wilner et al28; to g of cleaned
polystyrene beads (Biobeads SX2, 200 to 400 mesh from Biorad)
was added 2.5 mL of fibrinogen at 2.5 mg/mL in phosphate-
buffered saline (PBS) or 2.5 mL of ovalbumin at the same concen-
tration as control beads. The mixtures were incubated overnight at 4°C
under agitation. The unbound material was then removed by five
washings in 50 mL PBS, and the fibrinogen-coated beads were then
resuspended in 10 mL PBS. The amount of fibrinogen adsorbed to
the beads was determined by a competitive ELISA29 and showed
that 600 µg fibrinogen was bound to each gram of beads.

To determine thrombin adsorption to fibrin, aliquots of 1 mL of
fibrinogen-coated polystyrene bead suspension were centrifuged, the
supernatants discarded, and 0.2 mL thrombin (at serial dilutions
from 50 to 6 U/mL) were added to the pellets with continuous
mixing in a vortex agitator. After ten minutes incubation at room
temperature with continuous agitation, the beads were extensively
washed five times in 10 mL PBS and then suspended in 1 mL buffer.
The suspensions were incubated for a further two hours at room
temperature, centrifuged, and thrombin quantified in the
supernatants and in the pellets by amidolytic activity using chromo-
thrombin. No amidolytic activity was detectable in the supernatants,
and the amount of thrombin bound to fibrin-coated beads was
dependent on the concentration of thrombin added in the incubation
mixture. For the following experiments a suspension of fibrin-coated
bead on which 0.3 U/mL of thrombin was available was used.

Thrombin release during thrombolysis. One hundred microliters
of fibrin-coated beads were incubated at 37°C with 200 µL of
plasmin (1 CU/mL) with periodic agitation. At intervals, 20,000 U
aprotinin were added to block plasmin, and thrombin (present as thrombin-
FDP complexes) in the resulting solution was determined using
CBS 3447 and then adjusted by dilution to 10 U/mL. Neutraliza-
tion of thrombin-FDP by plasma AT III in the presence of heparin
was compared with that of free thrombin at the same activity using
Asserachrom fpa (Diagnostica Stago).

Comparison of the inhibitory effects of heparin and hirudin on
thrombin bound to the fibrin surface. (1) Experiment using fibrin
immobilized on polystyrene beads: To avoid fibrin formation during
the test, an afibrinogenemic patient’s plasma was used as a source of
AT III. To 100 mg of fibrin-coated beads presenting 0.3 U of
thrombin available on its surface were added 300 µL of an afibrino-
genemic patient’s plasma containing either saline (control), heparin,
or hirudin at several concentrations. After 120 seconds under vortex
agitation, the reaction was stopped by adding 5 mL of iced PBS and
centrifuged at 10,000 xg for 30 seconds. The beads were then
immediately washed three times in 5 mL iced PBS, and thrombin
amidolytic activity associated with the beads was then measured. (2)
Experiment using a standard, whole blood clot immersed in normal
plasma: Standard whole blood clots, prepared as above, were
suspended in 1.5 mL of normal citrated plasma containing either 0.5
IU/mL heparin or 1 µg/mL hirudin (Hoechst, final concentration).
After two hours incubation at room temperature with gentle rocking,
fpa was determined in the surrounding plasma.

Inhibition by heparin and hirudin of coagulation activation
during thrombolysis. Standard whole blood clots prepared as
above were suspended in 1.5 mL normal citrated plasma containing
600 ng/mL r-tPA in the presence of heparin (heparin Kabi at 0.1,
0.2, 0.5, 1, 2, 5, and 10 IU/mL) or recombinant hirudin used at
concentrations that induced the same prolongation of thrombin time
as standard heparin, or buffer (for control reaction). After three
hours incubation with gentle rocking, plasmin generated was
blocked by adding 10,000 U/mL aprotinin (final concentration).
Activation of coagulation in plasma was then estimated by two
different methods: determination of fpa released from plasma
fragments and semiquantitative determination of soluble fibrin.

RESULTS

Thrombin Adsorption to Fibrin

There was a dose-dependent relationship between the
thrombin added to the fibrinogen-coated beads and that
adsorbed to the fibrin beads. Under the conditions used, 5%
to 6% of the thrombin was found to be associated with the
fibrin surface as determined by its amidolytic activity on a
thrombin-sensitive substrate.

Release of Thrombin Into the Surrounding Medium
Induced by Fibrin Lysis

Thrombin associated with fibrin beads was progressively
released during incubation of the beads with plasmin (results
not shown). In our experimental conditions, all the thrombin
was released after one hour incubation, since after that time the beads did not induce any amidolytic activity on the thrombin-sensitive chromogenic substrate, and the amidolytic activity of the supernatant reached plateau levels.

Activation of Coagulation Induced by Lysis of a Whole Blood Clot

When the clot was suspended in PPP containing r-tPA (150, 300, and 600 ng/mL), a linear dose response was found between the extent of fibrin degradation (expressed as the concentration of FbDP in the supernatant) and the activation of coagulation in the surrounding plasma (expressed as the quantity of fPA released from plasma fibrinogen; Table 1).

It should also be noted that when clots were suspended in plasma in the absence of r-tPA, there was some evidence of coagulation activation but at a lower rate than that occurring in the presence of r-tPA (Table 1). This coagulation is dependent on thrombin bound to the clot, since it was also observed using a plasma depleted in vitamin K-dependent factors (Table 1).

Neutralization of Thrombin Released From the Clot, Under Lysis, by Heparin—AT III Complex

Thrombin release from the clot (thrombin-FDP complexes) and free thrombin used at the same amidolytic activity are similarly inhibited by addition of normal plasma 1/20 (as a source of AT III) in the presence of heparin: after one minute, residual thrombin activities were identical in the two mixtures (results not shown).

Inhibition of Thrombin Bound to the Fibrin Surface by Heparin and Hirudin

As shown in Fig 1, thrombin bound to fibrin polystyrene beads was poorly neutralized by incubation for 120 seconds with heparin in an afibrinogenemic patient’s plasma. In contrast, hirudin, used in the same conditions and at the same antithrombin activity as heparin, was much more effective in inhibiting the thrombin adsorbed to fibrin beads.

However, the difference between heparin and hirudin was less pronounced when the fibrin beads were incubated for several minutes with the afibrinogenemic patient’s plasma containing heparin or hirudin (results not shown).

Furthermore, when standard whole blood clots were immersed for two hours in plasma, thrombin bound to fibrin clot induced a release of 680 ng/mL of fPA from plasma fibrinogen. The amount of fPA generated was reduced to 160 ng/mL when 0.5 IU heparin was added to 1 mL of plasma and to 24 ng/mL when 1 μg of hirudin/mL of plasma was used (1 μg of hirudin has the same antithrombin activity as 0.5 IU heparin).

Inhibitory Effect of Heparin and Hirudin on Thrombolysis-Induced Coagulation Activation

Since rethrombosis occurs in some patients under thrombolytic therapy despite simultaneous treatment with heparin, the influence of hirudin on the activation of coagulation was tested in comparison with that of heparin. The following observations were made: (1) The degradation of the fibrin clot (expressed as the concentration of FbDP in the supernatant) was not affected by the presence of heparin or hirudin in the plasma, since the levels of FbDP generated were identical whether heparin or hirudin were used (results not shown). (2) The action of hirudin in the prevention of thrombolysis-induced coagulation activation is stronger than that of heparin. The levels of fPA released from plasma fibrinogen during thrombolysis of the suspended clots were much lower when plasma contained hirudin than when it contained equivalent doses of heparin. The use of very high heparin concentrations, in excess of pharmacologic doses, failed to inhibit completely the activation of coagulation (Fig 2).

Similar results were obtained with the determination of soluble complexes: these complexes were still present in the plasma containing 0.1 or 0.2 U/mL heparin in which clots were suspended. Soluble complexes were not found with equivalent concentrations of hirudin.

DISCUSSION

The activation of coagulation during thrombolytic therapy has already been reported. Heparin at pharmacologic concentrations is not sufficient to prevent the risk of rethrombosis, as already observed in clinical studies. In this work we propose that in addition to the ischemic reperfusion mechanism, this activation is due, at least in part, to thrombin bound to the fibrin network and progressively exposed at the fibrin surface during thrombolysis and to thrombin released during fibrinolysis as complexes with fibrin degradation products.

Since thrombin may favor both fibrin formation and

Table 1. Relation Between the Intensity of Fibrin Degradation (Expressed in FbDP) and Activation of Coagulation in the Surrounding Plasma (Expressed in fPA Released From Plasma Fibrinogen)

<table>
<thead>
<tr>
<th>Concentration of t-PA (ng/mL final concentration) in Plasma in Which a Clot Was Suspended</th>
<th>Concentration of t-PA in Plasma (ng/mL) - Control in the Absence of Clot</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>Extent of thrombolysis (in FbDP ng/mL)</td>
<td>500</td>
</tr>
<tr>
<td>fPA released from normal plasma (ng/mL)</td>
<td>680</td>
</tr>
<tr>
<td>fPA released from vitamin K-depleted plasma (ng/mL)</td>
<td>648</td>
</tr>
</tbody>
</table>
platelet adhesion to collagen, we have tested in our in vitro model strategies to neutralize thrombin, both associated with the clot and released during thrombolysis, to diminish the risk of rethrombosis during thrombolysis.

We have found, as have others, that thrombin bound to either fibrin polystyrene beads or whole blood clots remains active and therefore may promote in situ the extension of the thrombus: the thrombin bound to fibrin-polystyrene beads hydrolyzed a thrombin-sensitive substrate. Furthermore, using a more physiologic system, standardized whole blood clots, extensively washed to eliminate thrombin trapped in the fibrin network, induced fibrin formation when suspended in either normal plasma or vitamin K-dependent factor-free plasma. This activation of coagulation was demonstrated by the substantial generation of both fPA and soluble-fibrin monomer complexes.

Therefore, we have compared the efficiency of two antithrombin drugs on fibrin-bound thrombin: heparin and hirudin. Hirudin is an antithrombotic agent extracted from leeches and that is now available in large amounts, produced by genetic engineering. From our results it appears that heparin-AT III complex, which is a good inhibitor of free thrombin, was a poor inhibitor of thrombin bound to fibrin, as already described by Linardic and Greenberg. In contrast, we have found that hirudin at an equivalent dose neutralized both free and fibrin-bound thrombin.

The difference between the effect of heparin and hirudin on fibrin-bound thrombin neutralization was less pronounced with prolonged incubation time, as observed both with fibrin beads and standard clots suspended in plasma. When the fibrin clot was degraded by thrombolytic agents, there was a release of thrombin activity into the surrounding medium, as demonstrated in a purified system. Using the whole blood system, despite the addition of heparin to the plasma in which the clots were suspended, both fPA and soluble fibrin are generated, and this generation is higher during in vitro thrombolysis. This fibrin formation is evident even at very high doses of added heparin (up to 10 U/mL). Since thrombin released from the clot during thrombolysis (as thrombin-FDP complexes) may be inactivated by hepa-
In contrast to heparin, hirudin, which neutralizes both free thrombin and fibrin-bound thrombin, even at low doses, prevents more efficiently the activation of coagulation induced by clots suspended in plasma both before and during thrombolysis. FpA released from fibrinogen was much lower than that released in the presence of heparin used at the same antithrombin doses, and soluble fibrin was never detected in the plasma in which hirudin was added. Consequently, adequate anticoagulation by hirudin should be effective in preventing rethrombosis occurring after thrombolytic therapy. A further potential advantage of hirudin in this context is suggested by the reported inhibition of thrombin-dependent platelet adhesion to collagen.

From these results, we propose that hirudin should be tested in clinical trials for the prevention of rethrombosis associated with thrombolytic therapy.

REFERENCES

15. Ohlstein EH, Shebuski RJ: Tissue type plasminogen activator (tPA) increases plasma thromboxane levels which is associated with platelet hyperaggregation. Circulation 76:100, 1987 (abstr, suppl 4)
17. Lee DC, Mann KG: The activation of human coagulation factor V by plasmin. Blood 70 (suppl 1): 361 a, 1987 (abstr)

32. Krause J, Deutsch H: Localization of fluorescence labelled recombinant tissue plasminogen activator (rt-PA) on thrombi in vitro. Fibrinolysis 2:1, 1988 (abstr, suppl 1)
Evaluation of the inhibition by heparin and hirudin of coagulation activation during r-tPA-induced thrombolysis

M Mirshahi, J Soria, C Soria, R Faivre, H Lu, M Courtney, C Roitsch, D Tripier and JP Caen