Paracrine Rather Than Autocrine Regulation of Myeloma-Cell Growth and Differentiation by Interleukin-6

By Bernard Klein, Xue-Guang Zhang, Michel Jourdan, Jean Content, Frédéric Houssiau, Lucien Aarden, Marc Piechaczyk, and Régis Bataille

To explore the mechanisms involved in the pathogenesis of human multiple myeloma (MM), we investigated the potential role of interleukin-6 (IL-6), a B-cell differentiation factor in humans, and a growth factor for rat/mouse heterohybridomas and murine plasmacytomas. Using a heterohybridoma assay, we found that two well-documented human myeloma cell lines, RPMI 8226 and U266, did not secrete IL-6 and did not express RNA messengers for IL-6. Neutralizing antibodies to IL-6 did not inhibit their proliferation, and recombinant IL-6 did not stimulate it. Taken together, these data show that IL-6 is not the autocrine growth factor of these human myeloma cell lines. A high production of IL-6 was found in the bone marrows of patients with fulminating MM, compared with patients with inactive or slightly active MM, or to healthy donors. This IL-6 production was assigned to adherent cells of the bone-marrow environment but not to myeloma cells. A spontaneous proliferation of myeloma cells freshly isolated from patients was observed in short-term cultures. Recombinant IL-6 was able to amplify it two- to threefold. The spontaneous proliferation of the myeloma cells was inhibited by anti-IL-6 antibodies and reinduced by recombinant IL-6. After 2 to 3 weeks of culture, the myeloma-cell proliferation progressively declined and no IL-6-dependent myeloma cell lines could be obtained despite repeated additions of fresh IL-6 and costimulation with other cytokines such as tumor necrosis factor (TNF) or IL-1β. These data demonstrated a paracrine but not autocrine regulation of the growth and differentiation of myeloma cells by IL-6.

Several Cytokines (B-cell growth factors, BCGFs; and B-cell differentiation factors, BCDFs) have recently been found to be involved in the proliferation and differentiation of human B cells. Of these cytokines, B-cell stimulatory factor 2 (BSF-2) was shown to induce the final maturation of B cells into immunoglobulin-secreting cells (ie, plasma cells) and might be involved in the pathogenesis of autoimmunization. A cDNA of this cytokine, produced by a human HTLV1-infected T-cell clone (ie, TCL-Na1), was recently cloned and the deduced sequence was shown to be identical to that of interferon-beta 2 (IFN-β). IFN-β2 was originally described as a by-product of interferon-beta 1, produced by poly(I) - poly(C)-induced human fibroblasts. IFN-β2 is also produced by human fibroblasts and osteoblasts when stimulated by interleukin-1 (IL-1) or tumor necrosis factor (TNF). By bacterial lipopolysaccharide, or by diaicylglycerol and calcium ionophore. It has little or no antiviral activity and is a growth factor for hybridomas and mouse plasmacytomas. Thus, a cDNA of this cytokine, termed BSF-2/IFN-β2, was also shown to be identical to hybridoma growth factor (HGF), whose cDNA was cloned from human monocytes. It also induces HLA class-I antigens on fibroblasts, the production of acute-phase proteins by hepatocytes, the production of IL-2 by murine T cells, the proliferation of human and murine T cells, the differentiation of cytotoxic T cells, the proliferation and differentiation of murine B cells in synergy with IL-1, and the proliferation and differentiation of human hematopoietic precursors. Thus, the cytokines termed BSF-2, IFN-β2, and HGF are one and the same cytokine, and because of its pleiotropic effects, the name IL-6 is now generally used. A murine equivalent of human IL-6 has been purified and partially sequenced (ie, interleukin HP1, hybridoma-plasmacytoma growth factor, plasmacytoma growth factor). A cDNA was recently cloned and was shown to share homology with the human IL-6 gene. Murine IL-6 is necessary for in vitro survival and proliferation of murine plasmacytomas, which usually grow only in vivo; it is probably involved in the establishment and maintenance in vivo of peritoneal pristane-induced BALB/c plasmacytomas. As for human IL-6, murine IL-6 is mainly produced by monocytes, fibroblasts, and T-cell lines.

The existence of a specific factor (IL-6) for the proliferation of murine plasmacytomas prompted us to investigate the possibility that its human equivalent might be involved in multiple myeloma (MM). Several clues support this hypothesis: (a) conditioned media from adherent spleen cells of BALB/c mice primed by intraperitoneally injected pristane or mineral oil, and containing high levels of murine IL-6 have been previously reported to support the growth of human myeloma stem cells and (b) specific receptors for IL-6 were recently found on lymphoblastoid cell lines, but the highest levels were found on U266 and RPMI 8226 (J. Content, unpublished results, March 1988), two well-documented human myeloma cell lines (HMCLs), suggesting that these cell lines could be directly sensitive to this factor.

In contrast to recently proposed theories by Kawano et al, our present results favor a paracrine rather than an autocrine regulation of myeloma-cell growth and differentiation by IL-6.

From INSERM U291, Zolad, Laboratoire de Biologie Moléculaire, USTL, and Service d’Immunohematologie, Centre Guibe-Chauliac, Hôpital Saint-Eloi, Montpellier, France; Institut Pasteur du Brabant, and Ludwig Institute for Cancer Research, Brussels; Central Laboratory Blood Transfusion Service, Amsterdam.

Submitted June 27, 1988; accepted September 26, 1988.

Supported by grants from the "Table Association pour le recherche contre le Cancer" and "la Federation Nationale des Centres de Lutte contre le Cancer" (Paris).

Address reprint requests to Bernard Klein, MD, INSERM U291, Zolad, 99 Rue Puech Villa, 34100 Montpellier, France.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1989 by Grune & Stratton, Inc.

From www.bloodjournal.org by guest on November 15, 2017. For personal use only.
MATERIALS AND METHODS

Patients

We studied the production of IL-6 by bone-marrow cells from 29 patients with either MM (n = 26) or plasma cell leukemia (PCL, n = 3) after obtaining informed consent. The diagnostic criteria were those of the Southwest Oncology Group of the United States. Of the myelomas, 20 were of IgG, 8 of IgA, and one Bence Jones. Sixty percent of the patients had the kappa light chain subtype. The mean age was 64 years (range, 48 to 78) and the sex ratio of M:F was 2:6. Eighteen patients were studied during fulminating disease, characterized by extensive lytic bone lesions, recurrent hypercalcemia, death within 6 months, and PCL for three patients. The other 11 patients were studied during an inactive or slightly active phase of their disease, as determined by criteria previously reported. IL-6 production by both peripheral-blood and bone-marrow cells of one patient with PCL was also studied. Following a remission phase induced by chemotherapy, this patient had a fulminating relapse with extramedullary proliferation, hypercalcemia, and death within a month. In the terminal phase of the disease, 90% of the cells in the peripheral-blood and bone-marrow samples were malignant plasma cells bearing cytoplasmic kappa light chains. One patient with solitary plasmacytoma originating in bone marrow was included in the study. The tumor, obtained by surgical resection, was composed almost entirely of malignant plasma cells (>98%). Finally, bone marrow from seven healthy donors (HDs) was studied after obtaining informed consent.

We also studied the presence of IL-6 in normal sera and in the sera of 99 patients with MM, including patients with active or inactive disease. The diagnostic criteria were those of the Southwest Oncology Group. The presenting features were those of a standard MM population. Cultures of Bone Marrow and HMCLs

Short-term culture supernatants of bone-marrow cells and HMCLs. Bone-marrow samples from normal individuals and from patients with MM were prepared as previously described. A plasmacytoma obtained by surgical resection was gently teased to obtain a virtually pure population of plasma cells (>98%). Peripheral-blood mononuclear cells from one patient with PCL were obtained by centrifugation of the heparinized peripheral blood over Ficoll-Hypaque gradients. Supernatants were produced as follows: 10⁶ cells/mL, 24 hours at 37°C in PRMI 1640 supplemented with 2 mmol/L L-glutamine, 5 x 10⁻³ mol/L 2-mercaptoethanol (2-ME), with or without 1% fetal calf serum (FCS). At confluence, adherent cells were washed with fresh medium and cultured for 24 hours and 48 hours in RPMI 1640 with 5% FCS. The supernatants were filtered (0.22 μm) and stored at −20°C until use.

Culture supernatants from two HMCLs (ie, RPMI 8226, and U266) were also prepared (3 x 10⁶ cells/mL, cultured for one or three days in RPMI 1640 supplemented with 2 mmol/L L-glutamine, 5 x 10⁻³ mol/L 2-ME, and 5% FCS). The RPMI 8226 was purchased from Flow Laboratories (Irvine, Scotland). The U266 cell line was a gift from Dr Nilsson (Upplana, Sweden). Their main features have been previously published and were regularly checked in our laboratory. RPMI 8226 produced only λ light chains and had numerous typical chromosome markers. U266 expressed high levels of cytoplasmic IgEa immunoglobulins.

Supernatants from long-term cultures of adherent bone-marrow cells and fibroblast cell lines. Monolayers of adherent cells were obtained from bone marrows of six different patients and three HDs after 4 to 6 weeks of culture in RPMI 1640 supplemented with 2 mmol/L L-glutamine, 5 x 10⁻³ 2-ME, and 5% FCS. At confluence, adherent cells were washed with fresh medium and cultured for 24 hours and 48 hours in RPMI 1640 with 5% FCS. The supernatants were filtered (0.22 μm) and stored at −20°C until use.

Cytokine Assays

IL-6 bioassay. The presence of IL-6 in the culture supernatants of the HMCLs, of the bone-marrow adherent cell cultures, and in the sera of patients with MM was evaluated using the IL-6-dependent hybridoma cell line B9 as previously described in detail. None of the known cytokines, except IL-6, induced proliferation of this cell line (B. Klein, unpublished results, February 1988). Briefly, 5 x 10⁵ B9 cells were cultured in 96-well flat-bottomed culture dishes in 200 μL of RPMI 1640 culture medium with 5% FCS, and serial dilutions of the sample. Three days later, 0.5 μCi of (³H)TdR was added to each culture well, incubated for eight hours, and (³H)TdR incorporation was determined as previously described. rIL-6 was used as an internal standard in all assays. One unit of IL-6 was defined as the amount inducing half-maximal proliferation and amounted to approximately 1 pg of rIL-6.

IL-6 in the culture supernatants of bone marrows was assayed using another specific and highly sensitive bioassay. Briefly, 2 x 10⁵ IL-6-dependent hybridoma cells (mouse/mouse hybrid 7TD1) were incubated in 200 μL of culture medium in the presence of serial dilutions of supernatants. After four days, the number of cells was evaluated by colorimetric determination of hexosaminidase levels. One unit of IL-6 was defined as the amount required to obtain half-maximal growth of the cells and amounted to approximately 1 pg of IL-6. A selected spleen-cell concanavalin A (ConA) supernatant containing approximately 1,000 U/mL IL-6 was used as an internal standard in all IL-6 assays.

IL-1 assays. IL-1 activity was tested using a standard lymphocyte activating factor (LAF) bioassay, as previously described. The control IL-1 was recombinant IL-1 kindly supplied by Biogen Laboratories (Geneva). One unit of IL-1 was defined as the amount inducing a half-maximal proliferative response of the thymocytes. IL-1β was also measured using a standard radioimmunoassay purchased from Cisbron Laboratories (Pine Brook, NJ).

TNF bioassay. TNF activity was tested using a modified cytotoxic assay against the L929 fibroblast cell line. Briefly, L929 cells were cultured for 24 hours in 96-well flat-bottomed microtiter plates at a density of 4 x 10⁴ cells per well in 100 μL of RPMI 1640 culture medium supplemented with 5% FCS. Then 100 μL of serial dilutions of the sample were added to quadruplicate culture wells together with 20 μL of a solution of 10 μg/mL actinomycin D (Sigma, St Louis). Twenty-four hours later, the supernatants were removed and 100 μL of crystal blue (Merck, Darmstadt, WG; 5% crystal blue in 1:4 mixture of methanol:water) was added and left for ten minutes. The wells were then gently washed five times with tap water and the absorbance was determined at 540 nm using an automatic multichromatic photometer (Flow Laboratories, Irvine, Scotland). The TNF activity of a sample, expressed in units per milliliter, was defined as the reciprocal of the dilution that halved the absorbance in the culture wells. We have found that the sensitivity of the assay is to within 1 U/mL. Recombinant IL-1 is not cytotoxic in this bioassay and was found to be negative in all MM and PCL sera (unpublished data).

Activation of Malignant Plasma Cells in Vitro

Activation of malignant plasma cells freshly isolated from bone marrow. Bone-marrow samples from ten patients with MM and peripheral-blood cells from three patients with PCL were cultured at 10⁶ cells per milliliter in Iscove medium supplemented with 5 x 10⁻³ mol/L 2-ME and 5% FCS, in the absence or presence of rIL-6 at various concentrations (100, 500, or 1,000 U/mL). At culture days 0, 3, 7 and 15, the percentages of malignant plasma cells were determined by intracytoplasmic immunofluorescence using anti-kappa or anti-lambda light chain antibodies directly coupled to fluorescein (Kallestad, Austin, TX). The percentages of plasma cells in the S-phase were determined using an anti-bromodeoxyuri-
IL-6 IN HUMAN MULTIPLE MYELOMA

J. C. F. Ross, M. C. Forrest, C. P. Levison, and A. M. G. Stewart

Institute of Cancer Research, London, England

Received for publication February 26, 1982

Abstract

We describe the production and assay of human recombinant IL-6 (rIL-6) in a transfection system in which monoclonal antibody was obtained by cloning and expression of complementary DNA. Twelve of the 18 patients (67%) with fulminating disease had active disease. Within this group of patients with fulminating disease, the proportions of plasma cells were not correlated with death within 6 months. Supernatants in virtually pure form were produced with low cell densities. The rabbit antibody (ie, Bu-I, a generous gift from L. Aarden) to IL-6 activity and was used as controls in each experiment using this source of IL-6. IL-6 from the second source (provided by L. Aarden) was purified rIL-6 produced in Escherichia coli by molecular cloning and expression of complementary DNA derived from human monocyte-poly(A+) RNA, as described elsewhere. Monocyte-derived IL-6 (usually termed HGF) was obtained by culturing peripheral-blood mononuclear cells from healthy individuals for 24 hours in RPMI 1640 culture medium and 5% FCS. The rabbit anti–IL-6 antibodies were provided by J. Content. They were obtained by repeated immunization of rabbits with IL-6 and neutralized IL-6 (40,000 U/mL).

Northern Blot Analysis

Total cellular RNA was extracted by the guanidium/phenol method described by Maniatis et al and analyzed by electrophoresis of 20 µg of RNA through 1% agarose-formaldehyde gels followed by Northern blot transfer to geneScreenPlus nylon membrane (Dupont, Boston) as described by Thomas. The hybridization with 32P-labeled plasmid DNA and the autoradiographic procedure were reported elsewhere. The human IL-6 cDNA and the full-length rat glyceraldehyde-3-phosphate dehydrogenase pRGAPDH13 cDNA were described elsewhere.

RESULTS

Patients With Fulminating Multiple Myeloma Secreted Large Amounts of IL-6

As shown in Fig 1, spontaneous secretion of IL-6 was found in the culture supernatants of bone-marrow cells from healthy donors and patients with MM. Eighteen patients with fulminating disease (extensive lytic bone lesions with major fractures, recurrent hypercalcemia, PCL in three cases, and death within 6 months) had spontaneous IL-6 levels (833 ± 945 U/mL) significantly higher than those of 11 patients with inactive or slightly active disease (119 ± 81 U/mL) and those of healthy donors (147.2 ± 71 U/mL). Twelve of the 18 patients (67%) with fulminating disease had IL-6 levels >362 U/mL, ie, three standard deviations above the mean value observed in patients with inactive/slightly active disease. Within this group of patients with fulminating MM, the levels of IL-6 secretion in the bone-marrow cultures were not correlated with the proportions of plasma cells present in these cultures. A low but significant spontaneous secretion of IL-6 was observed in the bone marrows of healthy donors (147.2 ± 71 U/mL), while the IL-6 levels of patients with inactive/slightly active MM remained within the normal range. IL-6 was completely undetectable (threshold of detection: <10 U/mL) in one normal bone marrow, two bone marrows from patients with inactive disease, and two from patients with fulminating disease (Fig 1). Thus, bone marrows from patients with inactive/slightly active myeloma could be distinguished from those of patients with fulminating disease on the basis of IL-6 levels. As described in the Materials and Methods section, the same supernatants from bone-marrow cultures were also tested for IL-1 activity (LAF bioassay), IL-1β activity (radioimmunoassay), and TNF activity (L929 cytosis bioassay). The results in normal bone-marrow samples were: LAF = 0.7 ± 1.2 U/mL, IL-1β = 0.37 ± 0.23 ng/mL, TNF = 1.7 ± 1.9 U/mL; in bone marrow from patients with inactive/slightly active disease: LAF = 2.8 ± 4.2 U/mL, IL-1β = 0.58 ± 0.15 ng/mL, TNF = 1.9 ± 1.9 U/mL; and in bone marrow from patients with fulminating disease: LAF = 3.5 ± 7.8 U/mL, IL-1β = 0.91 ± 0.5 ng/mL, TNF = 2.5 ± 3.4 U/mL. Thus, neither LAF, IL-1β, nor TNF activity significantly discriminated between any categories of bone marrow, as opposed to IL-6.

Stimulation of HMCLs. The effect of rIL-6 on the proliferation of two HMCLs (RPMI 8226, U266) was also evaluated using cultures with low cell densities to increase the requirement of the tumor cells for exogenous growth factor, as described elsewhere.

Fluorescence technique described elsewhere. The hybridization with normal bone-marrow samples were: LAF = 0.37 ± 0.12 U/mL, IL-1β = 0.37 ± 0.23 ng/mL, TNF = 1.7 ± 1.9 U/mL; in bone marrow from patients with inactive/slightly active disease: LAF = 2.8 ± 4.2 U/mL, IL-1β = 0.58 ± 0.15 ng/mL, TNF = 1.9 ± 1.9 U/mL; and in bone marrow from patients with fulminating disease: LAF = 3.5 ± 7.8 U/mL, IL-1β = 0.91 ± 0.5 ng/mL, TNF = 2.5 ± 3.4 U/mL. Thus, neither LAF, IL-1β, nor TNF activity significantly discriminated between any categories of bone marrow, as opposed to IL-6.
TABLE 1. Production of IL-6 by Cells of the Bone-Marrow Environment But Not Myeloma Cells

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Non-T Cells*</th>
<th>HLA-DR-Positive Non-T Cells*</th>
<th>Adherent Non-T Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,600 (60%)</td>
<td>0 (95%)</td>
<td>2,300</td>
</tr>
<tr>
<td>2</td>
<td>874 (83%)</td>
<td>4 (96%)</td>
<td>649</td>
</tr>
<tr>
<td>3</td>
<td>1,381 (56%)</td>
<td>18 (93%)</td>
<td>1,679</td>
</tr>
</tbody>
</table>

*In parentheses, percentage of myeloma cells in the cell population.

Removal of bone-marrow T cells by rosetting with sheep RBCs did not affect IL-6 production. Non-T cells were separated into adherent cells and nonadherent cells. Contaminating monocytes and stromal cells were further removed from the nonadherent cells by treatment with anti-HLA-DR monoclonal antibody and rabbit complement. Culture supernatants were prepared by culturing the different cell populations for 24 hours at concentrations corresponding to their initial proportions in the non-T cell population. The non-T cells were cultured at 10^6 cells/mL. The IL-6 production was assessed using the B9 cell line.

IL-6 Was Secreted by Cells of the Bone-Marrow Environment, But Not by the Myeloma Cells

As bone marrow from patients with fulminating disease had the largest percentages of myeloma cells (data not shown), we considered the possibility that IL-6 was secreted by malignant plasma cells. Several findings supported the idea that IL-6 was secreted mainly by cells of the bone-marrow environment rather than by the myeloma cells: (1) As shown in Table 1, the separation of the bone-marrow cells into adherent and nonadherent cells clearly indicated that IL-6 was secreted by the bone-marrow adherent cells, and not by the nonadherent cell population containing the myeloma cells. (2) Virtually pure populations of freshly isolated myeloma cells secreted very small amounts of IL-6, if any (Table 2). In one case (patient A), this population was obtained from a bone-marrow plasmacytoma removed by surgical resection and contained >98% plasma cells. In the other case (patient B), it was obtained from the massive invasion of the peripheral blood with 50,000 myeloma cells/μL. The low production of IL-6 (20 U/mL) could not be further increased by IL-1β, TNFβ, or PMA, which are known to be potent IL-6 inducers in fibroblasts (Table 2).

Interestingly, the bone-marrow cells of patient B, comprising 90% myeloma cells like the peripheral blood, secreted large amounts of IL-6 (3,200 U/mL), indicating the importance of the bone-marrow environment for IL-6 production (Table 2).

(3) Human myeloma cell lines with a plasmacytic phenotype (RPMI 8226, U266) did not secrete IL-6 (data not shown), and did not express any IL-6 mRNA (Fig 2). (4) Monolayers of bone-marrow adherent cells, established from six patients with MM, secreted high IL-6 levels after 4 to 6 weeks of culture without any stimulation (Table 3). This was not specific for myeloma patients since monolayers from non-MM cases, established in the same conditions, also secreted significant IL-6 levels (Table 3).

Low Levels of IL-6 in Sera From Patients With MM

Since IL-6 was found in the sera of patients with autoimmune diseases, 99 sera from patients with MM were assayed for its presence. Low, but significant levels of IL-6 were found in these sera (range, 0 to 150 U/mL).

IL-6-Induced Myeloma-Cell Proliferation

Since spontaneous high IL-6 levels were detected in patients with fulminating disease and since IL-6 is a paracrine growth factor for murine plasmacytomas, we wanted to determine whether it was a growth factor for myeloma cells. Myeloma cells were isolated from the bone marrow of ten patients with active MM and from the peripheral blood of three patients with PCL. The percentages of myeloma cells in the S-phase were determined specifically using an anti-S-phase antibody. Myeloma cells did not proliferate or proliferated very little in vivo (Table 4). After seven days of culture, spontaneous proliferation was found in eight of 13 patients, and the percentages of the myeloma cells in the S-phase ranged from 3% to 10% of total myeloma cells. rIL-6 (optimal concentration, 1,000 U/mL) doubled this proliferation (Table 4). In addition, spontaneous proliferation was abolished by neutralizing antibody to IL-6 (Table 5). rIL-6 reversed the inhibitory action of the anti-IL-6 antibody and reinduced proliferation of myeloma cells (Table 5). After 15 days, exogenous rIL-6 did not enhance myeloma-cell prolif-
INTERLEUKIN - 6

GAPDH

Fig 2. Absence of IL-6 mRNA in human myeloma cell lines. Total cellular RNAs (20 μg) were fractionated by electrophoresis through a 1% agarose gel containing 1 mol/L formaldehyde and transferred onto a nylon membrane. Hybridizations were successively performed with the nick-translated IL-6 and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) probes. The GAPDH probe was used as an internal control to assay for mRNA integrity. The monocytes were peripheral-blood monocytes obtained after 24-hour adherence on plastic culture dishes.

...polyclonal plasma cells colonize the inflammatory granuloma, and finally a monoclonal plasmacytoma with characteristic translocations emerges.61 It is of major interest to note that murine malignant plasma cells do not produce IL-6. On the other hand, they are absolutely dependent on the continuous addition of exogenous IL-6 for proliferating in vitro.32,45 For these reasons, we considered the possibility that IL-6 was involved in the pathogenesis of human MM.

Large amounts of IL-6 were secreted by bone-marrow environment, but not by myeloma cells in patients with fulminating MM. Several observations supported our conclusion: (1) In the bone marrow of patients with MM, IL-6 was secreted by adherent cells (mainly monocytes and stromal cells), but not by HLA-DR-negative nonadherent cells, consisting mainly of myeloma cells. (2) Neither pure fresh myeloma cells or true myeloma cell lines (RPMI 8226 and U266)67,68 secreted any detectable IL-6, or contained any IL-6 mRNA. (3) Long-term cultures of adherent stromal cells from the bone marrow of patients with MM spontaneously secreted large amounts of IL-6. This was not specific of patients with MM since long-term cultures of bone-marrow adherent cells of HDs also spontaneously secreted IL-6. Thus, a similar situation occurs in human MM and murine plasmacytomas, namely that IL-6 is secreted in large amounts by the tumor environment, but not by malignant plasma cells. Kawano et al recently reported that in patients with MM, bone-marrow cells, enriched in myeloma cells, secreted IL-6 (ie, 0.4 U to 6 U/10⁶ cells/mL); they concluded that the myeloma cells were secreting IL-6 themselves.69 However, as the amount of IL-6 corresponding to 1 unit was not indicated in the abovementioned paper, and as IL-6 secretion in total bone-marrow cells was not compared with that in purified myeloma cells, this work was initially difficult to evaluate. A following paper by the same investigators indicated that the heterohybridoma MH60 used in these studies for testing IL-6 was as sensitive as the heterohybridomas we used, one unit corresponding to 5 pg of IL-6.62 Thus, we can conclude that Kawano et al published results similar to ours, namely that bone-marrow cells enriched in

<table>
<thead>
<tr>
<th>Table 3. IL-6 Production in Long-Term Cultures of Bone-Marrow Adherent Cells From Patients With Active MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 (U/mL)</td>
</tr>
<tr>
<td>Myeloma patients</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Healthy donors</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Bone-marrow adherent cells were cultured for 4 to 6 weeks. No malignant plasma cells were detected in the final cultures of myeloma bone marrow. Fresh medium (RPMI 1640 and 5% FCS) was added to the confluent cultures, and after further culturing for two days, the supernatants were assayed for IL-6 using the IL-6-dependent B9 cell line.
myeloma cells secreted only very small amounts of IL-6 compared with the total bone-marrow cells. This low secretion by cell populations enriched in myeloma cells could easily be the result of a minor contamination by residual monocytes, since heterohybridoma bioassays are sensitive enough to detect the IL-6 secreted by a single monocyte. Supporting the conclusion that myeloma cells do not secrete IL-6, we found that the myeloma cell lines RPMI 8226 and U266 secreted no IL-6 and contained no IL-6 mRNA. On the contrary, Kawano et al reported the presence of IL-6 mRNA in the U266 cell line, without precisely determining if it secreted IL-6 or not. This may be explained by their use of a dot-blot analysis, which did not allow them to exclude a nonspecific hybridization, compared with the northern blot analysis we used. This may also be explained by the probable existence of different clones of the U266 cell line, which was established 20 years ago, and carried on in many laboratories. The U266 cell line we used had a typical phenotype of plasma cells and produced IgE immunoglobulins.

IL-6 induced a transient proliferation of myeloma cells. We studied this point by direct determination of the proliferating myeloma cells using an anti–S-phase monoclonal anti-

Table 4. Effect of rIL-6 on the Proliferation in Vitro of Myeloma Cells Freshly Isolated From Bone Marrow

<table>
<thead>
<tr>
<th>Patient Culture Medium (U/mL)</th>
<th>Myeloma Cells in Culture (%)</th>
<th>Myeloma Cells in the S-Phase (%)</th>
<th>Day 0 of Culture</th>
<th>Myeloma Cells in Culture (%)</th>
<th>Myeloma Cells in the S-Phase (%)</th>
<th>Day 7 of Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultures with spontaneous proliferation on day 7</td>
<td></td>
<td></td>
<td></td>
<td>Cultures with no spontaneous proliferation on day 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1†</td>
<td>0</td>
<td>14</td>
<td>2</td>
<td>8</td>
<td>8.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2‡ ‡</td>
<td>0</td>
<td>19</td>
<td>1</td>
<td>13</td>
<td>6</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3‡ ‡</td>
<td>0</td>
<td>70</td>
<td>0</td>
<td>56</td>
<td>3</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4‡ ‡</td>
<td>0</td>
<td>65</td>
<td>5</td>
<td>81</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5‡ ‡</td>
<td>0</td>
<td>61</td>
<td>4</td>
<td>60</td>
<td>9.5</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6§ ‡</td>
<td>0</td>
<td>72</td>
<td>0.5</td>
<td>72</td>
<td>4.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7‡ ‡</td>
<td>0</td>
<td>90</td>
<td>1</td>
<td>92</td>
<td>6</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8§ ‡</td>
<td>0</td>
<td>95</td>
<td>1</td>
<td>95</td>
<td>10</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Not very active disease. † IL-6 produced in E. coli. ‡ Very active disease. § Plasma-cell leukemia. §§ IL-6 produced in oocytes.
IL-6 IN HUMAN MULTIPLE MYELOMA

Table 5. Inhibition of Myeloma-Cell Proliferation by Neutralizing Antibodies to IL-6

<table>
<thead>
<tr>
<th>Antibodies to IL-6</th>
<th>Patient 1 85% Myeloma Cells</th>
<th>Patient 2 91% Myeloma Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Myeloma Cells in the S-Phase (%)</td>
<td>Myeloma Cells in the S-Phase (%)</td>
</tr>
<tr>
<td>No stimulation</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Anti-IL-6*</td>
<td>1.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Anti-IL-6* plus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rIL-6 (3,000 U/mL)</td>
<td>8</td>
<td>160</td>
</tr>
<tr>
<td>rIL-6 (3,000 U/mL)</td>
<td>25</td>
<td>4,129</td>
</tr>
</tbody>
</table>

Bone-marrow cells were enriched in myeloma cells by removing adherent cells and T cells. The percentage of myeloma cells in the S-phase as well as the IL-6 levels in the culture supernatants were determined on day 3 of culture. In some groups, recombinant IL-6 (3,000 U/mL) was added at the initiation of cultures.

*The IL-6 levels in the culture supernatants were determined using the B9 cell line.
†The anti-IL-6 antibodies were added at the initiation of cultures at a concentration inhibiting 2,000 units of IL-6.

Spontaneous proliferation of myeloma cells was found in samples from eight of 13 patients after seven days of culture. It was abolished by neutralizing antibodies to IL-6 and reinduced by exogenous rIL-6. This clearly indicates that the spontaneous proliferation of myeloma cells was mediated by endogenous IL-6 secreted by the bone-marrow environment. rIL-6 (optimal dose, 1,000 U/mL) further increased this spontaneous proliferation, with 10% to 25% of the myeloma cells in the S-phase on day 7 of culture. If the S-phase is estimated to last for one third of the cell cycle, our results indicate that 30% to 75% of the myeloma cells were cycling in response to IL-6. This is unexpected for myeloma cells, which are usually considered to be nonproliferative. Over long periods of time, the cultures progressively declined despite repeated additions of fresh IL-6 or costimulation with other cytokines such as TNFα, IL-1β, IL-2, or IFN-γ. We have not yet been able to obtain an IL-6-dependent myeloma-cell line. It has recently been reported that IL-6 induced the proliferation of bone-marrow cells enriched in myeloma cells without the establishment of IL-6-dependent myeloma cell lines.45 In this report, the proliferation was assayed using tritiated thymidine incorporation.42 We rejected this proliferation assay because IL-6 is a growth factor for many cell lineages43 and it is impossible to determine which of these cells are really proliferating. The double immunofluorescence method used in the present study, combining an anti-S-phase monoclonal antibody and anti-immunoglobulin light chain antibodies, clearly demonstrated that IL-6 is a growth factor for myeloma cells, without the possibility of expanding them in vitro. IL-6 may also have this property for normal plasma cells. Indeed, plasma cells generated in cultures of pokeweed-mitogen stimulated B cells are proliferating,44 and IL-6 is essential for the generation of plasma cells in such cultures.45 In addition, we have found that polyclonal plasma cells from reactive (ie, inflammatory) bone marrow proliferate spontaneously, and that this proliferation is increased in response to IL-6 (X.G. Zhang, unpublished results, July 1987).

What is the role of IL-6 in human MM? The inability to obtain IL-6-dependent myeloma cell lines raises the question of the phenotype of the myeloma stem cell and the exact role of IL-6 in human MM. The only argument in favor of a plasmacytic tumor stem cell in MM is the existence of a small number of plasmacytic HMCLs, such as RPMI 8226 and U266. However, these plasmacytic HMCLs are not at all representative of the large majority of patients. They have been obtained only from a very small proportion of patients with fulminant disease and extramedullary proliferation, and from the extramedullary sites, not from bone marrow.65 In this small proportion of patients, additional oncogenic events may occur, allowing the plasma-cell compartment to metasize and generate HMCLs in vitro. We have previously shown that these plasmacytic HMCLs produce an autocrine growth factor and a B-cell growth factor, the two factors being copurified in a peak of 70 kilodalton (Kd) apparent molecular weight.66 This autocrine growth factor is not IL-1α, IL-1β, IL-2, IL-4, TNFα, TNFβ, IFNa, IFNγ, and has biological properties close to those of BCGF I19 (B. Klein, unpublished results, May 1987). Interestingly, the present results indicate that IL-6 is not the autocrine growth factor of these plasmacytic HMCLs. In the large majority of patients with active MM, no plasmacytic HMCLs can be obtained from the bone marrow, despite high amounts of

Fig 3. Effect of IL-6 on the proliferation of human myeloma cell lines. Human cell lines were cultured at low cell densities to increase their requirement for exogenous growth factors. rIL-6 was added at different concentrations at the initiation of the cultures, and proliferation was assayed after two days of culture using (H)dThd incorporation. The IL-6–dependent B9 cell line was used as a control for the activity of rIL-6 (φ—φ). Results are means ± SDs of the (H)dThd incorporation determined in six replicate culture wells. RPMI 8226 (φ—φ); U266 (△—△).
IL-6 produced constitutively. Several reports even suggest that the putative myeloma stem cell could be an immature B cell. B cells and pre-B cells bearing the idiotypic determinants of the myeloma monoclonal protein have been found. More recently, pre-B/B cells showing a double phenotype of immature B cells and plasma cells have been found in the bone marrow of patients with MM. The pre-B/B cells were able to generate pre-B/B cell lines not infected with the Epstein Barr virus and having patient-specific cytogenetic markers. All these observations suggest that the myeloma stem cell could be an immature B cell. This stem cell would proliferate but would also continuously differentiate, generating malignant plasma cells with a limited proliferative capacity. Since IL-6 is a potent B-cell differentiation factor, it might be essential for inducing the continuous differentiation of these tumor stem cells into myeloma cells and for inducing a transient proliferation of the myeloma cells. After longer culturing, the stem-cell compartment may be dried up by continuous differentiation, resulting in a decrease in the number of proliferating myeloma cells and the gradual culture death. Taking into account all these arguments and the present data, the recent proposal that IL-6 is an autocrine growth factor for myeloma cells, allowing the emergence of the tumoral clone, appears to be unwarranted.

ACKNOWLEDGMENT

We thank Dr L. Bataille-Zagury for editing the English text, and Drs N. Gonchoroff and Ph. Greipp (Mayo Clinic, Rochester, MN) for providing us with the Bu-1 monoclonal antibody.

REFERENCES

17. Billiau A: Redefining interferon: The interferon-like antiviral effects of certain cytokines (interleukin 1, interferon-B2, interferon-α) may be indirect or side effects. Antiviral Res 8:55, 1987
24. Garman RD, Jacobs KA, Clark S, Raulet DM: B-cell stimu-
IL-6 IN HUMAN MULTIPLE MYELOMA

525

40. Bast BJEG, Boom SE, Ballieux RE: Characterization of the colony forming cell in monoclonal gammopathies. Blood 60:608, 1982

58. Thomas PS: Hybridization of denatured DNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 77:5201, 1980

61. Potter M, Wax JS, Anderson AD, Nordan RP: Inhibition of

Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6

B Klein, XG Zhang, M Jourdan, J Content, F Houssiau, L Aarden, M Piechaczyk and R Bataille