Rapid Prenatal Diagnosis of β Thalassemia Using DNA Amplification and Nonradioactive Probes

We used in vitro DNA amplification by the polymerase chain reaction and nonradioactive probes for prenatal diagnosis of β thalassemia in Chinese from the Guangdong province. Exact molecular diagnoses were made in all 20 fetuses studied over a 6-month period. We conclude that this method of prenatal diagnosis for β thalassemia is a viable approach in many parts of the world where this disease is common.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1989 by Grune & Stratton, Inc.

From the Department of Medicine and Howard Hughes Medical Institute, University of California, San Francisco; Nan Fang Hospital, Guangzhou, Guangdong, China; and the Departments of Chemistry and Human Genetics, Cetus Corporation, Emeryville, CA.

Submitted August 29, 1988; accepted October 27, 1988.

Supported in part by Grant No. 5R37-DK16666 from the National Institutes of Health, Bethesda, MD. Y.W.K. is an Investigator at the Howard Hughes Medical Institute.

Address correspondence to Y.W. Kan, MD, Howard Hughes Medical Institute, U-426, University of California, San Francisco, CA 94143-0724.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1989 by Grune & Stratton, Inc.

0006-4971/89/7302-0041$3.00/0

From www.bloodjournal.org by guest on August 30, 2017. For personal use only.
Table 1. Oligonucleotide Probes Corresponding to Common Chinese β Thalassemia Mutations

<table>
<thead>
<tr>
<th>Mutation</th>
<th>5’—Sequence—3’*</th>
<th>Hybridization and Wash Temperatures (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codon 41-42 (−TCTT)</td>
<td>G A G G T T T G A G T C C T T T T</td>
<td>42</td>
</tr>
<tr>
<td>IVS2 position 654 (C → T)</td>
<td>T G C T A T T A C C T T A A C C</td>
<td>37</td>
</tr>
<tr>
<td>Codon 17 (A → T)</td>
<td>T T C A C C T A G C C C C A C C</td>
<td>44</td>
</tr>
<tr>
<td>TATA box −28 (A → G)</td>
<td>C T G A C T T C T A T G C C C</td>
<td>42</td>
</tr>
<tr>
<td>IVS1 position 5 (G → C)</td>
<td>C A G G T T G C T A T C A A G</td>
<td>40</td>
</tr>
<tr>
<td>Codon 71-72 (+A)</td>
<td>T G C C T T T A A G T G A T G</td>
<td>37</td>
</tr>
<tr>
<td>β⁺, codon 26 (G → A)</td>
<td>T G G T G G T A A G G C C C T T</td>
<td>44</td>
</tr>
</tbody>
</table>

*Horseradish peroxidase was conjugated to the 5’ end. Point mutations are underlined and deletions and additions are indicated by arrows.
††Sequences corresponding to the sense and antisense strands, respectively.

Fig 1. Diagnosis in 20 fetuses at risk for β thalassemia: Mutations in paternal (squares) and maternal (circles) chromosomes. Open symbols indicate that the fetus inherited the normal alleles; closed symbols represent the thalassemic alleles. In cases 10 through 14, both parents carry the same β thalassemia mutation; hence, the parental origin of the mutation could not be determined.

Fig 2. Three representative clinical diagnoses from cases 2, 7, and 15 shown in Fig 1. Each strip was hybridized with the nonradioactive probe corresponding to the indicated mutant sequence.

As compared with the phenotypic diagnosis obtained by fetal blood sampling or linkage analysis with DNA polymorphism.

Prenatal diagnosis by PCR offers several distinct advantages over previous methods. In vitro DNA amplification can be performed rapidly using either an automated machine or manually with water baths. The increased number of target sequences following amplification permits use of nonradioactive probes. All reagents, DNA primers, DNA probes, and heat-stable enzymes for DNA amplification can be stored for prolonged periods. The method has the additional advantage of speed. Amplification, hybridization, and detection require only one day, and a diagnosis can be achieved within two days. When used in conjunction with chorionic villus biopsy, a fetal diagnosis can be made before the tenth week of gestation.

We found a new TATA box mutation at position −30 (case 9). Initially, we were unable to determine the mutation on the paternal chromosome using the panel of probes, but after in vitro amplification and direct sequencing of ampli-
fied DNA, we were able to identify it (S.-P. Cai, J.-Z. Zhang, and Y.W. Kan, manuscript in preparation). Even in this complicated case, prenatal diagnosis was accomplished within 2 weeks.

Based on our experience with these 20 cases in a 6-month period, we conclude that prenatal diagnosis for \(\beta \) thalassemia is now a viable approach in many countries where this disease is common. Implementation will decrease the number of homozygous births in parts of the world where optimum treatment for \(\beta \) thalassemia is not readily available.

REFERENCES

Rapid prenatal diagnosis of beta thalassemia using DNA amplification and nonradioactive probes

SP Cai, CA Chang, JZ Zhang, RK Saiki, HA Erlich and YW Kan