Separation of Human Myeloma Cells From Bone Marrow Aspirates in Multiple Myeloma and Their Proliferation and M-Protein Secretion In Vitro

By Koji Iwato, Michio Kawano, Hideki Asaoku, Osamu Tanabe, Hideo Tanaka, and Atsushi Kuramoto

Human myeloma cells were purified from bone marrow aspirates from patients with multiple myeloma (MM) by Percoll discontinuous density-gradient centrifugation. E rosette formation and treatment with antimonyelomonocytic antibody (Leu M3) plus complement. Thus, the purified cell fraction consisted of >90% myeloma cells, even when as little as 15% myeloma cells were contained in bone marrow mononuclear cell fraction, determined by morphological and immunologic examinations. With highly purified myeloma cells from 29 patients with IgG type MM, biologic characteristics such as spontaneous proliferation (³H-TdR uptake) and M-protein secretion rate in vitro were evaluated. Both activities varied among patients within stage I and III, and a ³H-TdR uptake of 255-24, 132 cpm/4 × 10⁴ cells, and an M-protein secretion rate of 9 to 72 pg/cell/day, respectively, were recorded. However, in each patient, there was no correlation between ³H-TdR uptake and M-protein secretion rate. These results thus suggest that ³H-TdR uptake and M-protein secretion rate of highly purified myeloma cells are independent biologic parameters, not associated with the clinical stages, and the purification of myeloma cells we describe can contribute to further studies on the biologic characteristics and to understanding of the pathophysiology involved in MM. © 1988 by Grune & Stratton, Inc.

MULTIPLE MYELOMA (MM) is a hematologic disorder characterized by clonal proliferation of malignant plasma cells that secrete large amounts of M-protein.¹ Understanding of the biologic characteristics of this disease is thus very important. Many investigators have extensively studied the biologic features, such as M-protein secretion rate³ and ³H-thymidine labeling index,³ using unseparated myeloma cells from bone marrow (BM) aspirates in patients with MM and have presented their clinical implications.

On the other hand, the growth and M-protein secretion mechanism of separated human myeloma cells has not yet been fully understood. In murine plasmacytoma a growth factor derived from a murine macrophage cell line or pristane-stimulated murine peritoneal macrophages was recently reported to be required by plasmacytoma cells for proliferation and survival in vitro;³ we believe this observation provides an important clue for further investigation of this issue. Although in a murine system, plasmacytomas are easily induced in BALB/c mice after intraperitoneal injection of pristane³ and can be used as materials, the situation is different in human MM. Thus, this encouraging finding makes it necessary to obtain pure human myeloma cells in order to study the way in which myeloma cells are regulated so as to proliferate and secrete M-protein. The availability of human myeloma cell lines, which are extremely valuable, is limited because establishment and maintenance of these cells in culture is difficult.⁸ Thus, purified myeloma cells from patients with MM would be helpful, in addition to the established cell lines, because few reports have described the prospects of separating human myeloma cells from BM aspirates.¹⁰

We report a method for purification of human myeloma cells from BM aspirates in MM. We also investigated biologic characteristics such as spontaneous proliferation and M-protein secretion rate of these highly purified myeloma cells in vitro.

MATERIALS AND METHODS

Patients. BM aspirates were obtained from 29 patients with IgG type MM before or after undergoing treatment. Prior chemotherapy was interrupted at least 1 month before sampling. Clinical staging in patients with MM was done according to the classification of Durie and Salmon.¹² Informed consent was obtained from all patients according to institutional policy.

Preparation of myeloma cells. Heparinized bone marrow aspirates were centrifuged at 550 g for 15 minutes on Ficoll-Hypaque gradient cushion. The cells at the interface were collected (BM mononuclear cells, BMMNCs), and fractionated on Percoll (Pharmacia Fine Chemicals, Uppsala, Sweden) discontinuous density gradient as described by Dagg and colleagues.¹² Discontinuous Percoll gradients, each consisting of 2 mL 90%, 60%, 50%, and 45% of Percoll solution, were formed in a 15-mL tube (Corning, NY). Then 1 mL 30% solution suspending the BMMNCs (1 × 10⁷ cells/mL) and 2 mL 20% solution were layered on the gradient. The tubes were centrifuged at 550 g for 30 minutes at 25°C. Cells banding at interfaces between 60% and 50% (Fr. 3), and 50 and 45% (Fr. 2) were collected. A more enriched fraction of myeloma cells was harvested from these two fractions (usually Fr. 2), and then rosette formation with sheep RBCs (SRBCs) (E rosetting) was performed.¹³ Non-E rosetting cells (E cells) were harvested and treated with ½ dilute antimonyelomonocytic monoclonal antibody Leu M, (Becton Dickinson) plus rabbit complement (Hoechst Behring).¹⁴ After the cells were washed three times with RPMI 1640 medium (Nissui, Japan) supplemented with 10% fetal calf serum (FCS, M.A. Bioproducts, Walkersville, MD), cell viability in this myeloma cell-rich fraction was examined by trypan blue dye exclusion method. Purity of myeloma cells was enumerated morphologically by light microscope (Wright’s stain) and immunologically by direct immunofluorescence.

In vitro proliferation activity. The myeloma cell-rich fraction (>90% myeloma cells, 4 × 10⁶ cells/200 µL/well), obtained as

From the Department of Internal Medicine, Research Institute for Nuclear Medicine and Biology, Hiroshima University.

Submitted August 17, 1987; accepted March 30, 1988.

Supported in part by a grant in aid by Japanese Foundation for multidisciplinary Treatment of Cancer (1984) and by grants from the Ministry of Education Science and Culture.

Address reprint requests to Koji Iwato, MD, Department of Internal Medicine, Research Institute for Nuclear Medicine and Biology, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734, Japan.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. section 1734 solely to indicate this fact.

© 1988 by Grune & Stratton, Inc.

0006-4971/88/7202-0051$3.00/0
SEPARATION OF HUMAN MYELOMA CELLS

563
described above, was cultured in RPMI 1640 medium supplemented with 10% FCS and 2-mercaptoethanol (2-ME, \(1 \times 10^{-4}\) mol/L) for 48 hours in a humidified atmosphere containing 5% CO\(_2\) at 37°C. The cells were pulsed with 1 \(\mu\)Ci \(^{3}H\)-thymidine (\(^{3}H\)-TdR, 5 Ci/mmol, Amersham International, England) 12 hours before harvesting, and DNA synthesis was measured by \(^{3}H\)-TdR uptake.12-16

In vitro M-protein secretion activity. Myeloma cell-rich fractions (\(4 \times 10^{6}/200\) µL/well) were cultured for 48 hours as described above, and the culture supernatants were harvested. The amount of M-protein in the supernatants was measured by enzyme-linked immunosorbent assay (ELISA), a double-antibody sandwich method.17 Diluted supernatant (1/100 or 1/200) was added to each well of goat anti-human IgG antibody (goat anti-human IgG F(ab')\(_2\), TAGO, US) coated plate. After the plates were washed, peroxidase-conjugated goat anti-human IgG (goat F(ab')\(_2\), anti-human IgG-peroxidase, TAGO) was added. Enzyme reaction with O-phenylene-diamine (OPD) substrate in a presence of H\(_2\)O\(_2\) was then recorded at 405 nm by a plate reader (SLT-Labinstruments, Austria). Concentration of M-protein was determined according to absorbance of standard human IgG (human IgG, normal, TAGO). M-protein secretion activity was defined as follows; concentration of M-protein in the supernatant (µg/mL)/culture days (days) cell number (/mL) \(\times 1,000\) (pg/cell/day).

Statistical analysis. Correlation coefficient between \(^{3}H\)-TdR uptake and M-protein secretion rate in myeloma cells from each patient was assessed by Spearman’s method. The statistical significance in mean values of \(^{3}H\)-TdR uptake and M-protein secretion rate between stage I and III was analyzed by Student’s \(t\) test.

RESULTS

Myeloma cell separation. Myeloma cells from 29 patients were purified by Percoll gradient centrifugation, E rosette formation and treatment with Leu M\(_1\), plus complement. Figure 1 shows results of purification in five representative cases. In these cases, BMMNCs obtained by Ficoll-Hypaque density gradient contained 15.0% to 75.0% (mean 40.0%) myeloma cells. Thus, BMMNCs were a suspension of mixed cells consisting of myeloma cells, myeloid cells (mainly myelocytes and metamyelocytes), erythroblasts, lymphocytes, and monocytes. Percoll gradient sedimentation removed a large proportion of monocytes and erythroblasts from BMMNCs. Monocytes did concentrate at a low density fraction, an interface between 30% and 45% Percoll (Fr. 2), and the smaller fraction, an interface between 45% and 50% Percoll (Fr. 2). Myeloma cell recovery in these representative cases ranged from 30.0% to 85.0%, 52.0%, 48.5%, 70.0%, and 85.0%, respectively.

In vitro proliferation and M-protein secretion activity. Proliferation and M-protein secretion activities in vitro for the purified myeloma cells (with at least 90% purity) obtained from 29 patients were investigated. Proliferation activity was evaluated by an uptake of \(^{3}H\)-TdR pulsed during the last 12 hours in a 48-hour culture. Uptake counts in the first 12 hours of labeling were almost equal or low as compared with the last 12-hour pulse applied in this study (eg, 619 cpm in the first 12-hour labeling \(\nu\) 624 cpm in the last 12-hour labeling: \(3,654 \nu\) 3,150, 2,880 \(\nu\) 5,791, and 7,722 \(\nu\) 10,047). Therefore, we used the last 12-hour labeling to measure the proliferation activity. The M-protein secretion rate was determined by quantification of the M-protein secreted in culture supernatants during the 48 hours because the amount of secreted M-protein increased in proportion to the culture period, at least within 72 hours (Fig 2). The measurement of proliferation and M-protein secretion was suggested to be reproducible when myeloma cells were purified to at least >90%, since the preliminary experiments.
A. B.

Fig 2. M-protein secretion kinetics in highly purified myeloma cells. Purified myeloma cells from two patients were cultured for an indicated time, and the cumulative amount of secreted M-protein in the culture supernatants was measured by ELISA as described in the Materials and Methods section. The absorbance of the culture medium, which is the background and defined as that at time zero, was subtracted from each measured absorbance.

had shown that values of 3H-TdR uptake as well as M-protein secretion rates were almost equal in the same untreated patient at an interval of 1 or 2 weeks (data not shown).

The association between the potentials of proliferation and M-protein secretion was investigated with purified myeloma cells. As shown in Fig 3, no linear correlation was detected statistically (n = 29, r = .02, P > .05). This result shows that levels of 3H-TdR uptake in each myeloma cell were not associated with the M-protein secretion rate of the cell. Moreover, since wide variations were observed in both 3H-

Fig 3. 3H-TdR uptake and M-protein secretion. There was no correlation between 3H-TdR uptake and M-protein secretion rate in purified myeloma cells from each patient (n = 29, r = .02, P > .05).

Fig 4. 3H-TdR uptake, M-protein secretion, and clinical stage. Wide variations in proliferation activity (A) and M-protein secretion activity (B) of purified myeloma cells is evident independent of the patient’s clinical stage.

TdR uptake and M-protein secretion rates among patients, the association with clinical stages was also examined (Fig 4). For 3H-TdR uptake of myeloma cells, there was no significant difference between cells from stage I (n = 9, 6,246 ± 2,494 cpm; mean ± SE) and those of stage III (n = 20, 5,054 ± 1,338 cpm), (P > .05). Furthermore, neither did M-protein secretion rates have any association with clinical stages (stage I 25.7 ± 4.9 v stage III 24.1 ± 4.3 pg/cell/day, P > .05). Thus, proliferation and M-protein secretion activities in myeloma cells have no correlation within each cell and are also variable between cells from different patients.

DISCUSSION

We devised a method for separation of myeloma cells from BM aspirates in MM. The procedure we describe is valuable for isolating myeloma cells of high purity even from BM aspirates containing a low percentage of myeloma cells. Percoll discontinuous gradient centrifugation following Ficoll-Hypaque sedimentation is a useful step in removal of contaminating erythroblasts, monocytes, and myeloid cells. For BM aspirates containing myeloma cells at a very high percentage (>80%), highly purified myeloma cell fractions (>95%) could be obtained only after this Percoll gradient centrifugation (data not shown).

Few reports have described separation of myeloma cells from BM aspirates of patients with MM. Ali and co-workers demonstrated that complement-mediated lysis of BM cells from patients with MM using a rabbit antiserum raised against normal peripheral blood mononuclear cells resulted in fractions of highly enriched abnormal plasma cells. They obtained cell suspensions containing 72% to 99% (mean >84.3%) plasma cells with viability which ranged from 65% to 95% following the above-mentioned treatment with antiserum plus complement. In comparison with their
procedure, the one we describe is multistep; however, it is reproducible and can provide a high purity (>90%) of myeloma cells with good cell viability (>85%) even in BM aspirates containing a low percentage of myeloma cells.

In this study, highly purified myeloma cells were prepared from 29 patients with IgG myeloma. Spontaneous proliferation and M-protein secretion in vitro were then investigated. The amount of the secreted M-protein in culture supernatants increased in a time-dependent manner within at least 48 hours of the culture period, and M-protein secretion rate ranged from 4.0 to 72.0 pg/cell/day. Salmon also noted a variation of M-protein synthetic rates from unpurified myeloma cells in vitro (in the presence of other BM cells). Our results suggest that the observed variations in M-protein secretion could result from the innate potential of M-protein synthesis by the myeloma cells when removed from regulatory factors—not only regulatory T cells and monocytes but also cytokines.

Spontaneous proliferation of myeloma cells was evaluated by \(^{3}H\)-TdR incorporation. No significant increase in cell numbers was observed (within ±10%, data not shown) after 48 hours of culture in most of the myeloma cells examined, but the value of spontaneous \(^{3}H\)-TdR uptakes varied significantly (255 to 24,132 cpm/4 × 10^6 cells) among cells from individual patients. Although \(^{3}H\)-TdR uptake as well as M-protein secretion rate of myeloma cells in vitro had no association with clinical stages (Fig 4), proliferation and M-protein secretion activities were considered independent biologic parameters. Figure 3 shows that there was no correlation between \(^{3}H\)-TdR uptake and M-protein secretion rate in cells of each patient, suggesting that individual myeloma cells possess an endogenous potential to secrete M-proteins without regard to their spontaneous proliferation activity.

The mechanism of growth and M-protein secretion in myeloma cells and its regulation is an important issue which must be investigated. We have studied the effects of a T-cell-derived cytokine, human B cell stimulatory factor 2 (BSF-2/interleukin-6), which is reported to have growth-promoting activity for murine plasmacytoma and hybridoma cells, on proliferation and M-protein secretion in freshly isolated myeloma cells, purified as described. Results indicate that BSF-2 can augment proliferation but not M-protein secretion (O. Tanabe et al, manuscript submitted) and that human myeloma cells produce BSF-2 and constitutively express its receptor. Therefore, we consider that our method of separating human myeloma cells from patients could contribute significantly to investigation of the mechanism of growth and M-protein secretion in human myeloma cells as an addition to ongoing molecular biologic studies.

ACKNOWLEDGMENT

We thank Dr D. M. Masiwa for critical review of the manuscript and Hiroko Sumida, Yumiko Ohto, and Keiko Yamamoto for excellent secretarial assistance.

REFERENCES

Separation of human myeloma cells from bone marrow aspirates in multiple myeloma and their proliferation and M-protein secretion in vitro

K Iwato, M Kawano, H Asaoku, O Tanabe, H Tanaka and A Kuramoto

Updated information and services can be found at: http://www.bloodjournal.org/content/72/2/562.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml