Autoantibody-Associated Cross-Reactive Idiotypes Expressed at High Frequency in Chronic Lymphocytic Leukemia Relative to B-Cell Lymphomas of Follicular Center Cell Origin

By Thomas J. Kipps, Bruce A. Robbins, Patricia Kuster, and Dennis A. Carson

Using murine monoclonal antibodies (MoAbs) specific for immunoglobulin (Ig) cross-reactive idiotypes (CI), we performed immunohistochemical analyses on frozen tissue sections and cytocentrifuge preparations of Ig-expressing malignant cells from patients with chronic lymphocytic leukemia (CLL) and B-cell non-Hodgkin’s lymphomas (NHL) of follicular center cell origin. Twenty percent (4/20) of the Ig light chain–expressing CLL cells reacted with 17.109, a MoAb against a major CR1 on human IgM autoantibodies that is encoded by a conserved Ig variable-region gene (V gene) of the V\(\text{IIIb}\) sub-subgroup. Another MoAb specific for V\(\text{IIIb}\) framework determinant(s) reacted exclusively with all the 17.109-reactive CLL cells. Only one of 20 light chain–expressing CLL cells reacted with 686.6, a monoclonal antibody specific for a CR1 commonly found on rheumatoid factor (RF) paraproteins with light-chain variable regions of the V\(\text{IIla}\) sub-subgroup. Finally, greater than 20% (8/34) of all CLL reacted with G6, a MoAb specific for an Ig heavy chain–associated CR1 present on several RF paraproteins. In contrast, these CRIs were expressed at significantly lower frequencies in NHL of follicular center cell origin. Only one of 30 NHL expressing light chains reacted with the 17.109 MoAb. Also, in contrast to the concordance between the 17.109-CRI and V\(\text{IIIb}\) framework determinant(s) in CLL, two lymphomas in addition to the 17.109-reactive lymphoma were recognized by the anti-V\(\text{IIIb}\) framework MoAb. None of the NHL reacted with either the 686.6 or the G6 MoAbs. These results are the first to demonstrate that CLL and NHL differ with respect to the expression of autoantibody-associated CRIs. The data support the notion that NHL of follicular center cell origin differs from CLL in its utilization and/or somatic mutation of Ig variable-region genes. The physiological and immunotherapeutic implications of these findings are discussed.

© 1988 by Grune & Stratton, Inc.
of IgM RF paraproteins. G6-reactive RF paraproteins for which amino acid sequence data are available are noted to share considerable homology in the first, second, and fourth frameworks of the heavy-chain variable region. Therefore, it has been deduced that the heavy-chain variable regions of these paraproteins are encoded by a V_{H} gene(s) of the $V_{H}1$ subgroup, a relatively short D segment, and the J_{H}4 gene segment. Similarly, Greenstein et al immunized mice with a human monoclonal RF and generated a MoAb that reacted specifically with all human Igs having V_{H}1 κ light-chain variable regions regardless of the antibody’s specificity. Finally, Schrohenloher and Koopman recently described another MoAb, designated 6B6.6, that defines a second CRI on RF light chains derived from the $V_{H}1$1a sub-subgroup. As experiments with the 17.109 MoAb have shown, such idiotypic reagents may provide highly useful serological probes for the expression of conserved human Ig V genes.

Because of the unexpectedly high prevalence of the 17.109-CRI in CLL, we sought to determine whether other autoantibody CRIs also are expressed in this malignancy. Furthermore, because of recent evidence suggesting that the expressed antibody repertoire of CD5 B cells may be distinct from that of other B lymphocytes, we also examined CD5-negative, slg-positive NHL for expression of the same CRIs. These experiments demonstrate that autoantibody-associated CRIs are common in CLL but are rare in slg-expressing NHL of follicular center cell origin. These data are consistent with the notion that the expression and/or processing of antibody V genes in CLL is distinct from that in CD5-negative NHL. The implications of these findings are discussed.

MATERIALS AND METHODS

Tissue samples. Fresh-frozen lymphoid tissue from patient biopsy specimens were stored at -70°C prior to preparation of cryostat sections. NHL specimens expressing slg with κ light chains were selected for analyses. Included in our survey were 11 cases of diffuse large-cell lymphoma (DL), three cases of diffuse mixed lymphoma (DM), two cases of diffuse small cleaved lymphoma, one case of diffuse small noncleaved non-Burkitt’s, three cases of follicular mixed lymphoma (FM), and 11 cases of follicular small cleaved lymphoma. Peripheral blood leukocytes (PBL) from patients with CLL were prepared as described. The selection of patients was not biased for patients having autoimmune pathology or Ig paraproteins with RF activity. Rather, the patients examined were those followed by the Hematology/Oncology Division of the Scripps Clinic with NHL specimens expressing sig with λ light chain-expressing CLL, L.E.S, surveyed in the current study (Table 1). Of the lymphocytes infiltrating leukemic cells in frozen tissue sections (Table 1), 1). The relative frequency of expression of these CR1 on slg of 31 cases of B-cell NHL differed significantly (Table 2). These lymphomas do not express CD5 and are considered to be of follicular center cell origin. Of the 30 κ light chain–expressing NHL, only one reacted with the 17.109 MoAb
Fig 1. Cryostat sections of liver from CLL patient H.A.H. that demonstrate (+ + +) staining of 17.109-reactive leukemic cells infiltrating hepatic sinusoids. Sections are stained with either an IgG2b isotype control mouse MoAb of nonspecific activity (panel A) or MoAb 17.109 (panel B).

Table 1. CLL and NHL Positive for CRIs

<table>
<thead>
<tr>
<th>Patient</th>
<th>Diagnosis</th>
<th>Source</th>
<th>CDS</th>
<th>sIgM</th>
<th>sIgD</th>
<th>κ</th>
<th>λ</th>
<th>17.109</th>
<th>Vh21b</th>
<th>G6</th>
<th>886.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.N.D.</td>
<td>CLL</td>
<td>PBL</td>
<td>+++</td>
<td>++++</td>
<td>+/−</td>
<td>−</td>
<td>−</td>
<td>+++</td>
<td>−</td>
<td>−</td>
<td>++++</td>
</tr>
<tr>
<td>B.R.O.</td>
<td>CLL</td>
<td>PBL</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>++</td>
<td>−</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>F.U.H.</td>
<td>CLL</td>
<td>PBL</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>G.I.L.</td>
<td>CLL</td>
<td>PBL</td>
<td>+++</td>
<td>++++</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>++++</td>
</tr>
<tr>
<td>H.A.H.</td>
<td>CLL</td>
<td>PBL</td>
<td>+++</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+++</td>
<td>+++++</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>H.A.H.</td>
<td>CLL</td>
<td>Liver</td>
<td>+++</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+++</td>
<td>++++</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>H.A.H.</td>
<td>CLL</td>
<td>Spleen</td>
<td>++++</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+++</td>
<td>+++++</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>H.I.C.</td>
<td>CLL</td>
<td>PBL</td>
<td>+++</td>
<td>++++</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>H.U.R.</td>
<td>CLL</td>
<td>PBL</td>
<td>+++</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>++++</td>
</tr>
<tr>
<td>H.U.R.</td>
<td>CLL</td>
<td>LN</td>
<td>+++</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>L.E.S.</td>
<td>CLL</td>
<td>PBL</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N.E.I.</td>
<td>CLL</td>
<td>PBL</td>
<td>+++</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>N.E.W.</td>
<td>CLL</td>
<td>PBL</td>
<td>+++</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>S.M.I.</td>
<td>CLL</td>
<td>PBL</td>
<td>+</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>H.A.L.</td>
<td>DL</td>
<td>LN</td>
<td>−</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>S.A.L.</td>
<td>DL</td>
<td>LN</td>
<td>−</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>D.E.R.</td>
<td>DM</td>
<td>LN</td>
<td>−</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>B.R.I.</td>
<td>FM</td>
<td>LN</td>
<td>−</td>
<td>++++</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Abbreviation: LN, lymph node.

(Tables 1 and 2). The percentage of \(\kappa \)-expressing, 17.109-reactive NHL (3\%) is significantly lower than the percentage of \(\kappa \) light chain–expressing CLL that react with the 17.109 MoAb (\(P = .05 \), Student’s \(t \) test). Furthermore, in contrast to the concordance between expression of the 17.109-CRI and \(\kappa \) or \(\lambda \) framework determinants in CLL, two cases (S.A.L., a DL lymphoma, and B.R.I., an FM lymphoma) in addition to the 17.109-positive DL lymphoma H.A.L. reacted with the MoAb specific for \(\kappa \) or \(\lambda \) light chains (Table 1). None of the NHL cells reacted with either the G6 or the 6B6.6 MoAb. One case, D.E.R. (a DM lymphoma), had only + / – reactivity with G6 despite having + ++ reactivity with anti-IgM (Table 1). As such, this case was not considered positive for G6 in Table 2. The difference in the percentages of cases that express the G6-CRI among CLL \& NHL is highly significant (\(P < .002 \)).

DISCUSSION

MoAbs specific for human Ig CRIs can be used to probe for expression of conserved antibody V genes. Previous studies revealed that a relatively high proportion of CLL patients have leukemic cells that express slg reactive with the murine MoAb 17.109.\(^\text{14} \) Subsequent analyses demonstrated that 17.109-reactive leukemic cells from unrelated patients express \(\kappa \) genes that share greater than 99\% nucleic acid sequence homology.\(^\text{16} \) Furthermore, the \(\kappa \) variable gene expressed by 17.109-reactive CLL is homologous to a non-rearranged placental \(\kappa \) gene, designated Humkv32S, or \(\kappa \)RF because of its associated utilization by IgM autoantibodies.\(^\text{16,27} \) Thus, the 17.109-CRI in CLL is a phenotypic marker for the expression of this particular \(\kappa \) gene, apparently with little or no somatic mutation.

The present study extends this analysis by examining CLL for expression of other CRIs that also may be phenotypic markers for conserved Ig V genes. Greater than 20\% of all CLL cells tested reacted with MoAb G6, which identifies an antibody heavy chain–associated CRI present on several RF paraproteins.\(^\text{17} \) Protein sequence data of four paraproteins reactive with G6 suggest that the G6-CRI may be a marker for the expression of heavy-chain V gene(s) of the \(\kappa \) subgroup.\(^\text{18} \) All four paraproteins share extensive amino acid sequence homology in the first- and second-framework regions and apparently utilize the J\(_{H4} \) gene segment. Whether the repeated appearance of the G6-CRI in CLL is secondary to high-frequency utilization of a particular \(\kappa \) gene(s) or of a related \(\kappa \) gene with similar first- and second-framework determinants is currently under investigation. Another RF-associated CRI, identified by MoAb 6B6.6, was detected on only one of the 20 CLL samples expressing \(\kappa \) light chains. This antibody reacts with a \(\kappa \)encoded determinant(s) that is present on several IgM-RF paraproteins.\(^\text{20} \) As such it might be expected to recognize a subset of the \(\kappa \) light chain–expressing CLL. The \(\kappa \) light chain of the 6B6.6-CRI–positive CLL L.E.S. had been analyzed in an earlier study because of the RF activity of the L.E.S. CLL paraprotein.\(^\text{24} \) The light chain encoded by the expressed L.E.S. \(\kappa \) gene belongs to the \(\kappa \)VIb sub-subgroup and shares extensive homology with the \(\kappa \) light chains of the RF paraprotein PO.\(^\text{25} \) We have recently isolated a non-rearranged \(\kappa \)III gene from the granulocyte DNA of patient L.E.S., designated humkv328, from which the expressed gene apparently is derived.\(^\text{26} \) Finding that only one of the tested CLL samples reacts with this antibody is consistent with the notion that the humkv328 gene is utilized less frequently than is humkv325 in CLL or that the CRI recognized by 6B6.6 is lost because of somatic mutation in the expressed \(\kappa \) gene.

In addition to the anti-CRI antibodies, we used a MoAb specific for \(\kappa \) or \(\lambda \) framework determinants in NHL to determine the expression frequency of this variable region sub-subgroup in CLL. Only CLL samples that also reacted with the 17.109 antibody were recognized by this antiframework MoAb. Estimates of the number of distinct \(\kappa \) genes in humans range from 25 to 75.\(^\text{31,32} \) To date, over 40 \(\kappa \) genes have been distinguished,\(^\text{33} \) eight of which belong to the \(\kappa \)III subgroup.\(^\text{30,33} \) Only one of these, Humkv325, has nucleic acid sequence homology with the \(\kappa \) gene that is expressed by leukemic cells from two 17.109-CRI–positive CLL, namely, H.I.C. and H.A.H.\(^\text{16,27,35} \) The concordant binding of the 17.109 anti-CRI and the anti-\(\kappa \)RF framework antibodies suggests that of the \(\kappa \)RF genes only humkv325 is utilized in the CLL cases studied. Furthermore, the inability to detect \(\kappa \)RF-positive CLL cells that do not react with the 17.109 MoAb is consistent with the notion that this \(\kappa \) gene is expressed with little or no somatic mutation in CLL.\(^\text{16} \)

Although expression of autoantibody-associated CRIs has been detected in NHL,\(^\text{34} \) our study indicates that expression of such CRIs is significantly less frequent in NHL of follicular center cell origin than in CLL (Tables 1 and 2). The divergent frequencies of these CRIs in NHL \& CLL may be secondary to differences in antibody V gene utilization by the malignant B cells in these two diseases. Alternatively, the divergence may relate to differences in the rates at which the expressed antibody V genes undergo somatic mutation. Human B-cell follicular lymphomas that lack the CD5 antigen have been noted to undergo Ig V gene somatic mutation that introduces heterogeneity in the expressed antibody idiotypes.\(^\text{37,41} \) Such a V gene somatic mutation may permutate and distort CRI determinants that are recognized by the murine MoAbs used in this study. Consistent with this notion is the lack of concordance between the reactivities of the 17.109 and the anti-\(\kappa \)III framework antibodies in NHL. The latter MoAb detected two additional lymphomas in addition to the single case that expressed the 17.109-CRI. Thus, in this limited survey, the expression frequency of \(\kappa \)III framework determinants in NHL does not differ significantly from that noted in CLL.

Table 2. Expression Frequencies of Autoantibody-Associated CRIs in B-Cell Neoplasms

<table>
<thead>
<tr>
<th>Major CRI</th>
<th>Light Chain Expressing (%)</th>
<th>Light Chain Expressing (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\kappa)</td>
<td>NHL</td>
</tr>
<tr>
<td>17.109</td>
<td>20 (± 9)*</td>
<td>3 (± 4)</td>
</tr>
<tr>
<td>V(\kappa)lb</td>
<td>20 (± 9)</td>
<td>10 (± 6)</td>
</tr>
<tr>
<td>686.6</td>
<td>5 (± 5)</td>
<td>0</td>
</tr>
<tr>
<td>G6</td>
<td>25 (± 10)</td>
<td>0</td>
</tr>
</tbody>
</table>

* ± SE.
Fig 2. Cytocentrifuge preparations of PBL from patient S.M.I. that demonstrate (+ +) and (+ + +) staining of peripheral leukemic cells. Cells have (−) staining with an IgG2b isotype control mouse MoAb of nonspecific activity (panel A), (+ + +) staining with MoAb 17.109 (panel B), or (+ +) staining with MoAb G6 (panel C).
These findings may have important implications for immunotherapy for CLL (and perhaps Waldenström's macroglobulinemia). A disease derived from a minor B-cell subset that expresses slg with a restricted set of Ig V genes with minimal somatic diversification should be particularly amenable to passive immunotherapy with antiidiotypic antibodies. Furthermore, as shown here in these studies, MoAbs can be identified that detect CRIs that frequently are expressed in CLL. Batteries of such monoclonal antiidiotypic reagents may be useful for the early diagnosis and immunotherapy for large numbers of patients with this malignancy.

REFERENCES

30. Chen PP, Robbins DL, Jirk RF, Kipps TJ, Carson DA:
36. Stevenson FK, Wrightham M, Glennie MJ, Jones DB, Car-
Autoantibody-associated cross-reactive idiootypes expressed at high frequency in chronic lymphocytic leukemia relative to B-cell lymphomas of follicular center cell origin

TJ Kipps, BA Robbins, P Kuster and DA Carson

Updated information and services can be found at:
http://www.bloodjournal.org/content/72/2/422.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml