Platelet-Activating Factor Primes Neutrophil Responses to Agonists: Role in Promoting Neutrophil-Mediated Endothelial Damage

By G.M. Vercellotti, H.Q. Yin, K.S. Gustafson, R.D. Nelson, and H.S. Jacob

During inflammation polymorphonuclear cells (PMNs) are exposed to agonistic stimuli including activated complement, kallikrein, arachidonic acid metabolites, monokines, and platelet-activating factor (PAF). We report that PAF not only directly activates PMNs but in miniscule quantities (10^{-12} mol/L) "primes" them as well, that is, permits PMNs to respond to subsequent stimuli that would be otherwise ineffectual. PAF priming of responses including superoxide generation, elastase release, and aggregation is time dependent and is maximal within five minutes. PAF need not be present during the subsequent exhibition of PMN agonists, but priming is inhibited by cold and is also inhibited by the PAF receptor antagonists BN 52021, L-652, and kadsurenone. An intact PAF molecule is required because lyso-PAF and methoxy-PAF do not prime PMN responses. PAF priming is associated with both enhanced expression of the adhesive glycoprotein identified by OKM-1 antibody and an enhanced rise in intracellular calcium levels in response to the subsequent addition of agonists such as FMLP. PMNs primed with PAF and stimulated with either F-Met-Leu-Phe or phorbol esters are more effective in lysing and detaching cultured human endothelial cells—damage that can also be inhibited by the PAF antagonists. Because PAF is synthesized and exhibited on surfaces of endothelial cells perturbed by coagulation, we suggest that this lipid may potentiate otherwise trivial activators of margined PMNs so that they become damaging to the PAF-synthesizing endothelium itself. If so, our studies suggest a possible therapeutic role for PAF inhibitors in excessive inflammatory states.

© 1988 by Grune & Stratton, Inc.

From the Departments of Medicine and Surgery, University of Minnesota Medical School, Minneapolis.

Submitted September 8, 1987; accepted December 11, 1987.

Supported in part by National Institutes of Health Grants AM 01387, HL 33793, HL 28935, and HL 19725.

Address reprint requests to G.M. Vercellotti, MD, FACP, Box 480 UMHC, University of Minnesota Hospital, Harvard Street at East River Rd, Minneapolis, MN 55455.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

© 1988 by Grune & Stratton, Inc.

0006-4971/88/7104-0027$3.00/0
thelial injury. Furthermore, PAF antagonists inhibit these amplified responses, which suggests a role for these agents in excessive inflammatory states.

METHODS

Materials. PAF (dl-α-phosphatidylcholine, β-acetyl-γ-O-hexadecyl or la-α-phosphatidylcholine, β-acetyl-γ-O-alkyl: P1402 and P9525), phorbol myristate acetate (PMA), dl-ω-lysophosphatidylcholine, γ-O-hexadecyl (lyso-PAF), ferricytochrome C (horse heart type), f-Met-Leu-Phe (FMLP), superoxide dismutase, dimethyl-sulfoxide (DMSO), and bovine serum albumin (BSA) were purchased from Sigma Chemical Co (St Louis). Hanks’ balanced salt solution (HBSS) and medium 199 were obtained from GIBCO (Grand Island, NY). Sodium ⁵¹Cr and ¹¹¹In oxine were obtained from Amersham Corp (Arlington Heights, IL). Fura-2 was obtained from Molecular Probes (Eugene, OR). L652-731 (L-652) and kadsurenone were a kind gift of Dr John Chabala (Merck, Sharp, and Dohme, Rahway, NJ). BN52021 and methoxy-PAF were kind gifts of Dr Pierre Braquet (Institut Henri Beaufour, Paris). OKM-1 antibody was obtained from Ortho Diagnostic Systems (Westwood, MA). All materials were endotoxin free as tested by the limulus amebocyte assay.

Preparation of PMNs. Human volunteer blood samples (40 mL) were drawn (after receiving informed consent under the guidelines of the Committee on the Use of Human Subjects in Research at the University of Minnesota) into a plastic syringe containing 20 mL hydroxyethylstarch (Hespian; American Hospital Supply Corp, Irvine, CA) and 200 units preservative-free heparin (Upjohn Co, Kalamazoo, MI). The mixture was allowed to sediment at room temperature and the supernatant collected and centrifuged at 400 g for five minutes. The pellet was then resuspended in 0.2 mL ice-cold HBSS containing 100 mg/dL glucose. Residual erythrocytes were lysed in 15 mL ice-cold water, and after 25 seconds isotonicity was reconstituted by the addition of 5 mL of 3.6% sodium chloride. The suspension was centrifuged in the cold at 400 g for five minutes and the pellet resuspended in 5 mL HBSS, carefully layered on top of Percoll (Sigma) made up to a density of 1.075, and then centrifuged at 1,200 rpm for two minutes, the supernatant removed, and 1 mL HBSS added. Cytochrome c (75 μmol/L) was then added to each tube and was followed by a stimulus such as FMLP (10⁻⁷ mol/L) or PMA (100 ng/mL). The cells were incubated at 37°C for 15 minutes and thereafter placed on ice. The supernatant was removed after centrifugation for the measurement of cytochrome c reduction as previously described. ¹²⁵ Priming was performed by using both l-PAF and dl-PAF. No differences were seen when using either PAF preparation. When PAF inhibitors were used, they were added at the given concentrations for five minutes at 37°C before the addition of PAF. BN52021, L-652, and kadsurenone were dissolved in DMSO and then added to HBSS to result in a final concentration of DMSO not exceeding 0.1%. Control buffer contained HBSS with 0.1% DMSO. The control responses to FMLP or PMA were performed by adding HBSS with 0.5% albumin to the PMN suspension, washing as described earlier, and then stimulating with FMLP or PMA. In some experiments, cytochalasin B (5 μg/mL) was added to PMNs before stimulation with FMLP. A similar priming technique was used to measure the stimulated release of elastase by measuring the cleavage of a peptide substrate, MeO-Suc-Ala-Ala-Pro-Val-nitroanilide, as previously described. ¹³ We arbitrarily defined 100% elastase release by the amount of elastolytic activity in the supernatant of PMNs (2 x 10⁶/mL) treated with cytochalasin B (5 μg/mL) and stimulated with FMLP (10⁻⁷ mol/L) for 20 minutes at 37°C. Neutrophil aggregation and adhesion to endothelium were performed as previously described ¹⁴ upon similarly primed PMNs.

The effect of PAF priming on neutrophil CR3 expression. Studies assessing the effect of PAF priming on neutrophil complement receptor type 3 (CR3) expression were performed as described by Nelson et al. ¹⁵ Briefly, PMNs (5 x 10⁶/mL) suspended in PBS containing 0.2% BSA were stimulated with PAF in various concentrations for 15 minutes at 37°C. Alternatively, in sequential agonist experiments 10⁻⁷ mol/L PAF (or HBSS as a control) with 0.5% human albumin was added to the PMNs for five minutes followed by stimulation with FMLP (10⁻⁷ mol/L) or buffer. At the end of the incubation the reaction was stopped by placing the PMNs on ice, adding anti-CR3 antibody (5 μL OKM-1), and mixing, and incubation at 4°C was continued for 30 minutes. After incubation, the cells were washed twice with cold PBS, treated with goat antimouse fluorescein-conjugated secondary antibody, incubated for 30 minutes at 4°C, again washed and treated with 1% paraformaldehyde, and stored in the dark at 4°C until analyzed by a CellTech flow cytometer. The flow cytometer was calibrated as previously described, ¹⁶ and control studies were done to establish that staining was specific for the primary antibody used.

Assay of PMN intracellular Ca²⁺. We measured intracellular calcium levels by using Fura-2 as a fluorescent indicator of cytosolic free calcium. PMNs (1 x 10⁶/mL) were loaded with Fura-2 (5 μmol/L), washed, and resuspended in HBSS (1 x 10⁶/mL). The change in emission fluorescence (512 nm) over time after stimulation with FMLP and/or PAF was measured in a Spex Fluorolog Spectrofluorometer (Spex, Edison, NJ). The intracellular calcium concentration was calculated by measuring the ratio of the fluorescence intensity at excitation wavelengths of 340 nm and 380 nm as described by Grynkiewicz et al. ¹⁷ The resting neutrophil intracellular calcium concentration was 40 ± 10 nmol/L.

PMN-mediated endothelial cell detachment and killing. The ability of PMNs to cause endothelial cell lysis and detachment was measured by using ⁵¹Cr-labeled HUECs grown to confluence in 24-well 2-cm² dishes as previously described.

Statistics. Results are expressed as means ± SEM. Statistical analysis used Student’s t test.
VERCELLOTTI ET AL

with varying concentrations of PAF and stimulated with FMLP

amount

released

nmol superoxide/10 PMNs 15 mm released. (B) In analogous

Methods. One hundred percent elastase release equaled the

of elastase released. ±

buffer for 15 minutes at 37°C and superoxide

± (10 mol/l) or

ide production.

concentrations of

PMNs were incubated or primed with various

release.

superoxide production

(dotted line); these quantities

addition of FMLP. As

seen in Fig 1A, PAF alone at

superoxide (5 nmol/l06 PMNs/15 mm). If PMNs are first

primed with minute amounts of PAF—as low as 10⁻¹¹

mol/L—and then stimulated with FMLP, however, large

quantities of superoxide are produced (solid line). This

priming for superoxide production was not limited to the

agonist FMLP; PAF (10⁻⁷ mol/L) pretreatment of PMNs

also synergistically enhanced superoxide production when

PMNs were later stimulated with PMA (38 ± 1 nmol/10⁶

PMN/15 min v 46 ± 1 nmol/10⁶ PMN/15 min with PAF

priming, P < .01). Other neutrophil functions are also

primed by PAF, that is, PAF-primed, FMLP-stimulated

neutrophils release much more elastase than cells exposed
either to PAF or FMLP alone (Fig 1B). Preincubation with

PAF (10⁻⁸ mol/L) also enhanced PMN elastase release

induced by PMA (34% ± 2% release with PMA v 52% ± 2%

with PAF plus PMA, P < .01).

PAF priming of superoxide (and elastase) release is time

dependent as shown in Fig 2. Pretreating PMNs with PAF

enhances the response to subsequently exhibited FMLP, with

a maximal increment in superoxide production noted after

five minutes of preincubation; thereafter the priming effect
deteriorates over the next 60 minutes. Moreover, PAF need

not be present during subsequent FMLP stimulation to

obtain an enhanced response; PAF, washed away from the

PMNs before FMLP addition, still provokes PMN hyper-

responsiveness. For example, PMNs treated with PAF (10⁻⁸

mol/L) for five minutes and then stimulated with FMLP

(with the PAF remaining in the reaction solution) produced

20 ± 2 nmol/10⁶ PMNs/15 min—virtually identical to PMNs

pretreated with PAF and then washed before the addition

of FMLP (19 ± 1 nmol/10⁶ PMNs/15 min).

PAF primes PMN adhesive responses. Preincubation of

PMNs with PAF also enhances their adhesion to endothe-

lium. Data shown in Table 1 demonstrate that priming of

PMNs with PAF (10⁻⁷ mol/L)—a dose that does not itself

increase adhesion (line 2)—significantly enhances the adhe-

sion of FMLP-stimulated PMNs (compare lines 3 and 4).

Similarly, neutrophils primed with PAF and stimulated with

PMA become significantly more adherent than cells treated

with PMA alone (lines 5 and 6). Another adhesive pheno-

non, PMN aggregation, is also synergistically enhanced:

PAF (10⁻⁸ mol/L) or FMLP (10⁻⁷ mol/L) by themselves

induce only modest PMN aggregation; in contrast, PMNs

first treated with PAF for five minutes and then stimulated

with FMLP aggregate to a much greater degree (Fig 3), and

Fig 1. (A) Effect of PAF upon FMLP-stimulated PMN superox-

dide production. PMNs (2 × 10⁵) were pretreated for five minutes

with varying concentrations of PAF and stimulated with FMLP

(10⁻⁷ mol/L) or buffer for 15 minutes at 37°C and superoxide

measured as in Methods. Results are expressed as the mean ± SEM

nmol superoxide/10⁶ PMNs/15 min released. (B) In analogous

Methods. One hundred percent elastase release equalled the

amount released by PMNs (2 × 10⁵/ml) pretreated for five

minutes with cytochalasin B (5 μg/ml) and stimulated with FMLP

(10⁻⁷ mol/L). Results are expressed as the mean percentage ±

SEM of elastase released.

RESULTS

PAF primes PMN respiratory burst and elastase

release. PMNs were incubated or primed with various

concentrations of PAF for five minutes followed by the

addition of FMLP. As seen in Fig 1A, PAF alone at

concentrations up to 10⁻⁷ mol/L induces virtually no

superoxide production (dotted line); likewise, FMLP (10⁻⁷

mol/L), when added alone to neutrophils, provokes minimal

superoxide (5 nmol/10⁶ PMNs/15 min). If PMNs are first

primed with minute amounts of PAF—as low as 10⁻¹¹

mol/L—and then stimulated with FMLP, however, large

quantities of superoxide are produced (solid line). This

priming for superoxide production was not limited to the

agonist FMLP; PAF (10⁻⁷ mol/L) pretreatment of PMNs

also synergistically enhanced superoxide production when

PMNs were later stimulated with PMA (38 ± 1 nmol/10⁶

PMN/15 min v 46 ± 1 nmol/10⁶ PMN/15 min with PAF

priming, P < .01). Other neutrophil functions are also

primed by PAF, that is, PAF-primed, FMLP-stimulated

neutrophils release much more elastase than cells exposed
either to PAF or FMLP alone (Fig 1B). Preincubation with

PAF (10⁻⁸ mol/L) also enhanced PMN elastase release

induced by PMA (34% ± 2% release with PMA v 52% ± 2%

with PAF plus PMA, P < .01).

Table 1. PAF Primed Stimulated PMN Adhesion to HUEC

<table>
<thead>
<tr>
<th>PMN Treatment</th>
<th>PMN Adhesion (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMN</td>
<td>17.91 ± 2.81</td>
<td></td>
</tr>
<tr>
<td>PMN + PAF</td>
<td>17.54 ± 2.73</td>
<td><.001</td>
</tr>
<tr>
<td>PMN + FMLP</td>
<td>32.71 ± 4.93</td>
<td></td>
</tr>
<tr>
<td>PMN + PAF + FMLP</td>
<td>69.74 ± 2.61</td>
<td></td>
</tr>
<tr>
<td>PMN + PMA</td>
<td>37.20 ± 3.92</td>
<td><.001</td>
</tr>
<tr>
<td>PMN + PAF + PMA</td>
<td>71.95 ± 3.07</td>
<td></td>
</tr>
</tbody>
</table>

PMNs were pretreated with PAF (10⁻⁷ mol/L) or buffer for five

minutes and stimulated with either FMLP (10⁻⁷ mol/L) or PMA (100

ng/mL) and PMN adhesion to endothelium measured as in Methods.

Results are expressed as the mean ± SEM PMN adhesion of four

experiments done in triplicate.
Mechanism of enhanced PMN responses due to PAF priming. Both adhesion and aggregation involve the expression of adherent surface glycoproteins (assayable by monoclonal antibodies such as OKM-1) that also function as receptors for iC3b (CR3 receptors). PAF alone increases the expression of these CR3 receptors in a dose-dependent fashion (Fig 4), and significant amplification occurs with very small doses (10^{-12} mol/L), some three orders of magnitude less than that needed to produce perceptible PMN aggregation. Moreover, in ancillary experiments PAF (10^{-12} mol/L) preincubation was found to amplify the increase in CR3 receptor expression provoked by 10^{-7} mol/L FMLP by increasing the mean channel fluorescence by 50% compared with FMLP (10^{-7} mol/L) alone.

Because receptor-ligand signal transduction in PMNs is thought to be mediated by changes in intracellular calcium levels and phosphatidylinositol turnover, we assayed with the calcium-sensitive probe Fura-2 the effect of priming upon FMLP-induced intracellular calcium accumulation. As shown in Fig 5, at very low concentrations of PAF (10^{-11} to 10^{-14} mol/L) no change in intracellular calcium levels occurs; however, if PMNs are first primed with these same tiny concentrations of PAF and then stimulated with FMLP a dose-dependent increase in intracellular calcium levels above that mediated by FMLP (10^{-9} mol/L) alone is evident.

The order of addition of agonists is critical for maximal priming. As shown in Fig 6, the addition of PAF to PMNs for five minutes followed by washing and the subsequent addition of FMLP increases superoxide production by 19 nmol over either agonist alone (first bar, Fig 6). In marked contrast, no enhanced superoxide production is seen if the agonists are added in the reverse order (second bar). Moreover, priming by PAF requires an intact PAF molecule because lyso-PAF (which has a hydroxyl group instead of an acetate at position 2) or methoxy-PAF does not prime superoxide production in PMNs subsequently stimulated with FMLP (bars 3 and 4). Finally, others have shown that PAF, to exert its other known actions, must be bound by specific membrane receptors—the metabolism of such PAF is slowed by cold incubation (4°C). This also seems so for priming because PAF priming is prevented at cold
PAF priming enhances PMN-mediated endothelial lysis and detachment. We previously showed that neutrophil-mediated endothelial damage depends on close adhesion of PMNs to endothelial monolayers as well as oxidant production and protease release. Because PAF enhances PMN adhesion and aggregation as well as superoxide and elastase release, we suspected that such priming might aggravate endothelial cell lysis and detachment wrought by activated PMNs. In support, as shown in Table 2, we used concentrations (10^{-7} mol/L) of FMLP and PAF that when added alone to PMNs cause little endothelial lysis or detachment (lines 2 and 3). If PMNs are first primed with PAF and then stimulated five minutes later with FMLP, however, significantly enhanced endothelial cell lysis and detachment occurs (line 4). PMA (100 ng/mL), a more powerful stimulant of PMN responses, does cause PMN-mediated endothelial cell damage, even during the brief incubation shown in Table 2 (line 5); notwithstanding, PAF priming further aggravates this PMA-mediated damage (line 6).

Inhibition of PAF priming by PAF antagonists. The recently described PAF receptor antagonists BN52021, kadsurenone, and L652 all inhibit PAF priming of neutrophils to subsequent agonists and concomitantly abrogate PAF enhancement of PMN-mediated endothelial injury. These compounds in micromolar concentrations inhibit PAF-mediated incremental responses in several PMN functions, including PAF-primed neutrophil adhesion (Fig 7A), superoxide release (Fig 7B), and elastase release (Fig 7C). These antagonists did not inhibit FMLP-induced superoxide release, elastase release, or adhesion by themselves, but only the incremental PAF priming response (data not shown).

Not surprisingly, BN52021, kadsurenone, and L652 also inhibit PAF-aggravated, neutrophil-mediated endothelial lysis (Fig 8A), probably by inhibiting enhanced production of superoxide and adhesion, and PAF-enhanced endothelial detachment (Fig 8B), probably by inhibiting enhanced neutrophil elastase release. Again, the PAF antagonists did not inhibit the agonist-stimulated, PMN-mediated endothelial injury itself, but only the increment induced by PAF priming (data not shown).

DISCUSSION

The present studies demonstrate that minuscule quantities of PAF markedly enhance neutrophil responses to subsequent activation by the agonists FMLP and PMA. The primed neutrophil responses include respiratory burst as evidenced by enhanced superoxide release, degranulation as measured by elastase release, and adhesion as measured by adherence of neutrophils to human endothelium as well as PMN aggregation. These findings essentially confirm recently reported observations of Ingraham et al and Gay et al. We now demonstrate for the first time that these PAF-primed neutrophils are also excessively damaging to cultured endothelial cells. Moreover, PAF-primed PMN responses and subsequent PMN-mediated endothelial damage were shown to be completely inhibited by the recently described PAF antagonists BN52021, L-652, and kadsurenone.

We suggest that these results may provide new insights into mechanisms of vascular damage during inflammation. For instance, the circulating neutrophil is probably exposed to diverse inflammatory mediators that may modulate its function. We previously suggested that, in sepsis-associated ARDS, activated complement (C5a) may play a critical role in activating neutrophils to cause pulmonary endothelial cell damage. Although C5a is a powerful chemotaxin and

Table 2. PAF Priming Enhances PMN-Mediated Lysis and Detachment of Endothelial Monolayers

<table>
<thead>
<tr>
<th>PMN Treatment</th>
<th>Lysis (%)</th>
<th>Detachment (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PMN</td>
<td>0.72 ± 0.48</td>
<td>1.90 ± 0.55</td>
</tr>
<tr>
<td>2. PMN + PAF</td>
<td>1.28 ± 1.07</td>
<td>2.27 ± 1.16</td>
</tr>
<tr>
<td>3. PMN + FMLP</td>
<td>1.29 ± 0.52</td>
<td>2.68 ± 0.51</td>
</tr>
<tr>
<td>4. PMN + PAF + FMLP</td>
<td>5.04 ± 1.26</td>
<td>6.26 ± 1.26</td>
</tr>
<tr>
<td>5. PMN + PMA</td>
<td>8.63 ± 2.90</td>
<td>9.80 ± 2.90</td>
</tr>
<tr>
<td>6. PMN + PAF + PMA</td>
<td>27.08 ± 3.65</td>
<td>28.01 ± 3.64</td>
</tr>
</tbody>
</table>

PMNs (5 x 10^6) were primed with PAF (10^{-7} mol/L) or buffer for five minutes at 37°C and then stimulated with FMLP (10^{-7} mol/L) or PMA (100 ng/mL) and the specific endothelial cell lysis and detachment after three hours measured as in Methods. Values are percentages of maximal lysis or release and are expressed as means ± SEM of three experiments done in triplicate. Spontaneous lysis with buffer alone was approximately 5% and spontaneous detachment, 2%. One hundred percent endothelial cell lysis was measured by the addition of H₂O₂ (0.3%) to control wells.
promotes neutrophil adhesion and aggregation, it is a weak stimulus of the respiratory burst and exocytosis. This suggests that additional inflammatory agonists might be required to fully provoke PMNs and thus promote full-blown catastrophic ARDS. In fact, others have demonstrated that endotoxin, although a sluggish PMN agonist itself, primes neutrophil responses to other soluble stimuli. In addition, endotoxin induces from macrophages the release of the monokine IL-1, which can alone augment neutrophil adhesion to endothelium and also can induce PAF synthesis in endothelium. In this latter regard, evidence that PAF does indeed play an important etiologic role in endotoxic states: activation by inflammation of intravascular coagulation with production of thrombin. Thrombin, like IL-1, has been shown to induce PAF production in endothelial cells, and thrombin-exposed endothelium becomes an excessively adhesive substrate for neutrophils—perhaps by virtue of this production (Table 1). Stimulated by these observations, we recently preliminarily reported that if PMNs are layered atop thrombin-treated endothelium they become hyperresponsive to otherwise ineffectual doses of agonists such as C5a, FMLP, or PMA. These amplified responses—including superoxide production, elastase release, and actual mediation of endothelial damage—can be specifically blocked by PAF inhibitors; this suggests that "cross talk" occurs between endothelial PAF stimulated by thrombin and marginated PMNs. These findings provide an interesting paracrine amplification of endothelial damage that may, for instance, accompany intravascular coagulation attending sepsis. That is, we propose that the small amounts of PAF derived from endothelial cells in the vicinity of activated coagulation potentiate otherwise trivial activators of marginated PMNs; these cells then become lethal to that same endothelium. If this construct is correct, inflammation-mediated vascular damage syndromes should be ameliorated by PAF inhibitors.
REFERENCES

39. Wickham NWR, Vercellotti GM, Yin HQ, Moldow CF, Jacob HS: Neutrophils are primed to release toxic oxidants by contact with thrombin-stimulated endothelium: Role of endothelial cell-generated platelet-activating factor. Clin Res 35:603, 1987 (abstr)
Platelet-activating factor primes neutrophil responses to agonists: role in promoting neutrophil-mediated endothelial damage

GM Vercellotti, HQ Yin, KS Gustafson, RD Nelson and HS Jacob