Erythroid colonies from five patients with an early erythroblastic leukemia were obtained in "serum-free" cultures in the presence or absence of recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) and homogeneous native erythropoietin (Epo). Erythroid colonies with abnormal morphology and karyotype could be grown in different culture conditions. Their erythroid nature was ascertained by the presence of carbonic anhydrase I and glycoprotein A. Leukemic erythroid progenitors strongly differed from normal progenitors in that spontaneous colonies were always obtained, sometimes with an extremely high plating efficiency (up to 5.7%). Colonies were found to be autonomous from exogenous hematopoietic growth factors because they were still obtained with a high plating efficiency at an average of one cell per culture in the absence of any added growth factor. No evidence for an autocrine secretion of Epo or GM-CSF emerged because Epo or GM-CSF could not be detected by biologic or radioimmunologic assays from the culture supernatant or cellular extracts of the leukemic cells and that Epo or GM-CSF antibodies did not block autonomous growth.

In all cases, however, hematopoietic growth factors increased the plating efficiency of the abnormal erythroid progenitors. In the two "de novo" leukemias, leukemic erythroid progenitors responded primarily to Epo, whereas in the three other patients' (chronic myeloid leukemia) blast crisis they responded maximally to GM-CSF plus Epo. Recombinant erythroid-potentiating activity had no effect in any of these cases. These results suggest that the leukemic erythroid clonogenic cells arise from expansion of erythroid progenitors at different levels of differentiation (ie, CFU-E or BFU-E, depending upon the disease) and that autonomous growth is not related to a secretion of Epo or GM-CSF.

SEMISOLID CULTURES have clearly demonstrated that the proliferation and differentiation of hematopoietic cells are regulated by distinct growth factors called colony stimulating factors (CSF). Recent progress in protein purification as well as in gene-cloning techniques have permitted the purification of six different human growth factors to homogeneity (ie, macrophage CSF [M-CSF], interleukin 3 [IL3], granulocyte CSF [G-CSF], erythropoietin [Epo], erythroid-potentiating activity [EPA], and GM-CSF) and the cloning of their genes. EPA appears to be identical to an inhibitor of metalloproteinase and may not be a true growth factor. Through the use of these factors, it has been shown that the erythroid progenitors consist of a spectrum of cells ranging from early progenitors that can be grouped together as early and late burst-forming-units (BFU-E) to more mature progenitors called colony-forming-units (CFU-E). The terminal differentiation of early BFU-E is dependent on two different activities, burst-promoting-activity (BPA) and Epo, in contrast to late BFU-E and CFU-E, which appear to be regulated only by Epo. Recent studies with human recombinant GM-CSF, IL3, and G-CSF have shown that, when purified to homogeneity, these factors have BPA.

Using a polyclonal antibody against isozyme I of carbonic anhydrase (CAI) and the FA6 152 monoclonal antibody (MoAb), we recently diagnosed several cases of early erythroblastic leukemias that phenotypically were compatible with erythroid progenitor cells. This erythroid characterization has been corroborated through ultrastructural studies that have documented ferritin molecules in typical cytoplasmic granules.

In the present study, we have explored the effect of recombinant GM-CSF, recombinant EPA, and homogeneous native Epo on in vitro leukemic erythroid colony formation by using cells derived from five erythroleukemic patients.
times in Iscove’s modified Dulbecco’s medium (IMDM, GIBCO, Paisley, Scotland). The cells subsequently were cryopreserved in pure fetal calf serum with 10% dimethylsulfoxide (Lab Bruneau, Paris) by using either a minicooler (Compagnie Francaise de Produits Oxygènes, Paris) or a standard technique (−20°C for two hours, −70°C overnight) and kept in liquid nitrogen until use.

Marrow cells were obtained from normal marrow donors after informed consent, and an 18-day-old fetal liver was studied after separation of the light-density cells on a Ficoll-metrizoate gradient as before.

Semisolid culture procedures. Cultures were maintained in “serum-free” medium by using the techniques described by Iscove et al.17 and Steward et al.18 as applied to human cells. Briefly, the medium contained 1.5% deionized bovine serum albumin (Cohn fraction V, Sigma Chemical Co, St Louis),19 iron-saturated human transferrin (300 μg/mL, Sigma), calcium chloride (28 μg/mL), a mixture of sonicated lipids, 7.5 × 10⁻⁴ mol/L a-thioglycerol, 100 ng/mL insulin, and 0.8% 4,000 cp methylcellulose in IMDM. The mixture of lipids was obtained by sonicating 7.8 mg cholesterol, 6.14 mg linoleic acid, and 7.4 mg dipalmityl lecithin (all obtained from Sigma) in 10 mL of IMDM (without sodium bicarbonate) containing 1% serum albumin as previously described.20 Twenty microliters of this mixture was used per milliliter culture. Control cultures were maintained with 10% human AB serum or fetal calf serum. Some experiments were carried out using the plasma clot technique21 to perform fluorescence labeling of in situ individual colonies.22

Biosynthetic human GM-CSF and EPA were purified from medium conditioned by Chinese hamster ovary cells, which constitutively express high levels of the biosynthetic proteins from integrated copies of the 91023(B) vector containing the EPA or GM-CSF cDNA. EPA and GM-CSF were purified as described previously by using gel filtration and reverse-phase high-pressure liquid chromatography.23 The protein diluent was used as a negative control in all bioassays. Human urinary Epo was purified to homogeneity by a combination of gel filtration and reverse-phase high-pressure liquid chromatography. The protein diluent was used as a negative control in all bioassays. Human urinary Epo was purified to homogeneity by a combination of gel filtration and reverse-phase high-pressure liquid chromatography.23

In addition, leukemic cells from patients C and D were incorporated at 1 × 10⁶ cells/mL in a 0.5% agar overlay. A methylcellulose overlay containing 5 × 10⁶ normal marrow cells was subsequently added, and colonies were observed at days 7 and 12.

In some experiments, rabbit anti-GM-CSF serum or rabbit anti-Epo serum was directly included in the culture. The GM-CSF and Epo antibodies were obtained by immunizing rabbits with recombinant GM-CSF or homogenous native Epo. A quantity of 5 μL/mL of anti-Epo serum was able to neutralize the activity of 10 IU of exogenous Epo; the anti-GM-CSF was used at a 1/100 dilution. Preimmune serum was used as a control. Because cultures from patient D were inhibited by serum, the anti-Epo IgG fraction was separated from anti-Epo serum by diethylaminoethyl–Affigel Blue gel chromatography (Bio-Rad Laboratories, Richmond, Calif.).

Immunofluorescence studies on cells grown in culture. Cultures grown in methylcellulose with different stimulating factors were individually recovered by adding 1 mL of Hanks’ medium to each Petri dish. The cells were washed and counted and their viability evaluated by the trypan blue exclusion test. Subsequently, the cells were cytocranifuged and fixed with pure methanol for one minute. Double immunofluorescence labeling was performed by first using a pool of three murine anti-glycophorin A (GPA) MoAbs (LICR-LON-R1022, LICR-LON-R183 and H85 [Immunotech, Marseille, France]) at a 1/100 dilution followed by a goat F(ab) fragment against mouse Ig conjugated to fluorescein (Bioart, Meudon, France); then the rabbit polyclonal antibody against CA1 was applied and revealed by goat IgG against rabbit IgG conjugated to rhodamine. Slides were mounted and observed under a Zeiss microscope equipped with appropriate filters.

The absolute number of CA1-positive cells was calculated by multiplying the total number of cells per culture by the percentage of CA1-positive cells after fluorescence labeling. In all cases, cytocranifuge preparations were stained with May-Grünwald-Giemsa stain.

Table 1. Characteristics of the Five Patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Primary Syndrome</th>
<th>Age</th>
<th>Sex</th>
<th>Leukocytes</th>
<th>Blasts (%)</th>
<th>Erythroid Blasts After Ficoll Separation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CML</td>
<td>34</td>
<td>M</td>
<td>*</td>
<td>63</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>CML</td>
<td>58</td>
<td>F</td>
<td>103,000</td>
<td>19</td>
<td>40-60†</td>
</tr>
<tr>
<td>C</td>
<td>CML</td>
<td>17</td>
<td>M</td>
<td>82,000</td>
<td>23</td>
<td>35†</td>
</tr>
<tr>
<td>D</td>
<td>—</td>
<td>58</td>
<td>M</td>
<td>52,000</td>
<td>47</td>
<td>80</td>
</tr>
<tr>
<td>E</td>
<td>—</td>
<td>62</td>
<td>M</td>
<td>18,000</td>
<td>45</td>
<td>75</td>
</tr>
</tbody>
</table>

*Marrow specimen.
†These percentages were raised after thawing of frozen marrow samples. A variation was observed according to the sample for each patient.

In patients A, B, and D, metaphases from individual colonies were analyzed essentially as described by Dubé et al.24 Briefly, each culture was monitored for the optimal selection time (ie, day 5 for patient A and day 9 for patients B and D). One hour before harvesting, 0.1 mL of colcemid (GIBCO) diluted to 1 μg/mL was distributed over the culture. Individual colonies were harvested and directly transferred to polylysine-coated slides covered with 2 drops of 0.075 mol/L KCl. After 20 minutes in a humid environment
Fig 1. Aspect of abnormal erythroid colonies from the five patients. Cells were grown in serum-free methylcellulose cultures, and colonies were observed under an inverted microscope except for patient A. (A) A colony observed (in patient A) at day 12 after stimulation by GM-CSF (original magnification ×1,400; current magnification ×1,400). (B) A spontaneous colony observed (in patient E) at day 12 of culture (original magnification ×1,400; current magnification ×1,400). (C) A similar colony grown (in patient A) in plasma clot culture and in situ labeled with the polyclonal antibody against CAb after methanol fixation of the culture. Binding was revealed by goat IgG against rabbit IgG conjugated to rhodamine and observed under an episcopic at low magnification (original magnification ×700; current magnification ×700). (D) A large erythroid colony grown from patient C in the presence of 100 pmol/L GM-CSF and 1 IU/mL Epo (original magnification ×400; current magnification ×400). (E) A spontaneous colony from patient A (original magnification ×1,400; current magnification ×1,400). (F) An erythroid colony (in patient D) normally hemoglobinized (appearing dark on the photograph) is in close proximity to an abnormal erythroid colony in a culture stimulated by Epo (original magnification ×1,400; current magnification ×1,400). (G) A small colony (in patient E) grown in the presence of Epo (original magnification ×2,800; current magnification ×2,800).

RESULTS

Characterization of the erythroid colonies. Preliminary results have shown that abnormal erythroid colony formation could be obtained in these five patients under different culture conditions (Fig 1). However, these colonies were atypical in patients A, B, and E, whatever the culture conditions.

In patient A, the colonies were medium sized (50 to 200 cells) and relatively dispersed and maximum at day 12. In patient B, the colonies were large, dispersed, and maximum between days 12 and 18. At this time, a portion of the colonies became much tighter, especially when Epo was added, and they resembled typical BFU-E colonies. In patient E, the colonies were small (up to 50 cells), compact, composed of large cells, and maximum at day 8. The erythroid origin of the colonies from these three patients was established by labeling these cells with erythroid differentiation markers both in a plasma clot, which had the advantage of labeling all colonies in situ, and in methylcellulose cultures. Cells from these colonies exhibited CAb; in addition 40% were labeled by anti-GPA MoAbs. Epo significantly increased the proportion of GPA-positive cells.
In patients C and D, the erythroid colonies were much more typical. A spectrum of erythroid colonies corresponding to early and late BFU-E colonies was present in patient C. In patient D, all the erythroid colonies were similar and looked like late BFU-E. Although more typical in appearance, these colonies were abnormal because they were never as red as the rare colonies with a normal karyotype (Fig 1). In these two patients, cells exhibited both GPA and CAI even in the absence of Epo. This factor markedly increased the terminal maturation of erythroblasts in patient C, as attested by morphological studies.

In patients D and E, only erythroid colonies were observed under a variety of culture conditions. In patients A, B, and C, on the other hand, granulocytic (neutrophilic, basophilic, and eosinophilic) colonies also grew; additionally, a large number of megakaryocytic colonies were seen in patient C even in the absence of a specific stimulating factor. The granulocytic colonies of patients A, B, and C were observed at low cellular concentration only when GM-CSF was added. Mixed erythrogranulocytic colonies were not observed.

Cyto genetic analysis of the erythroid colonies. Cytogenetic studies of bone marrow (patient A) or of unstimulated blood cell cultures (patients B and D) have been reported previously. All metaphases from patient A were hyperdiploid (56 to 64 chromosomes) including a standard Ph chromosome. All metaphases from patient B were abnormal: some had the Ph as the sole abnormality; others had additional changes with a modal chromosomal number of 53. In patient D, all mitoses were abnormal (46 chromosomes), including a marker chromosome resulting from a t(1;15) translocation. Results of the cytogenetic study of colonies are summarized in Table 2. Cells from spontaneous colonies (patients B and D) and from colonies grown in the sole presence of GM-CSF (patient A) showed either hyperdiploid Ph1-positive karyotypes (except in one colony from patient B) or abnormal karyotypes with the marker chromosome (patient D). The colonies grown in the presence of Epo were hyperdiploid in patient A, either diploid and Ph1-positive or hyperdiploid and Ph1-positive in patient B, and either abnormal (with the marker chromosome) or normal in patient D.

Dispersed and tight colonies were not cyogenetically distinguishable in patient B.

These results showed that some colonies resulted from blastic cells (hyperdiploid in patients A and B, with a marker in patient D), whereas the others resulted from Ph1-positive CML chronic-phase cells (granulocytic or erythroid) in patient A and B or from apparently normal cells in patient D (normal karyotype and colonies with a normal appearance).

From this study, it appeared that all colonies from patient A, whatever the culture conditions, belonged to the acute phase of leukemia; in patients B and D, erythroid progenitors from the CML chronic phase or from normal clones were estimated to be less than 5% because these karyotypes were only found in erythroid colonies with a normal aspect.

Regulation of erythroid colony formation by GM-CSF, EPA and Epo in the five patients. In all patients, cultures were first performed on fresh cells, and subsequent studies were repeated on frozen cells in defined medium containing albumin. In patient B, a larger number of spontaneous colonies formed (plating efficiency, 5%) in the absence of exogenous stimulating factor. In patients A, C, and D, "spontaneous" erythroid colonies were present but were less frequent (about 1%), whereas in patient E spontaneous colonies were rare.

Purified recombinant GM-CSF, EPA, and homogenous native Epo were tested in cultures plated at 1 x 10^4, 1 x 10^3, or 1 x 10^2 cells/mL for patients A to D and 25 x 10^2 cells to 1 x 10^1/mL for patient E. A dose-response curve for GM-CSF was performed for patient C; it showed that a 100-pmol/L concentration was optimal for erythroid colonies (Fig 2). In the range 1 pmol/L to 1 nmol/L, no response to EPA was observed (Fig 2). A similar dose-response study was performed for Epo in the presence of 100 pmol/L GM-CSF; a plateau was obtained at 1 IU/mL Epo (Fig 3). In subsequent studies, GM-CSF and EPA were used at 100 pmol/L whereas Epo was added at 1 IU/mL. These three factors were used either alone or in various combinations. Some variations were observed in the absolute plating efficiency of each patient and in the frequency of spontaneous colonies (50% variation). These variabilities were mostly

Table 2. Cytogenetic Studies of Colonies

<table>
<thead>
<tr>
<th>Patients</th>
<th>Stimulating Factors</th>
<th>Types of Picked Colonies</th>
<th>Number of Examined Colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diploid With Ph<sup>1</sup></td>
</tr>
<tr>
<td>A</td>
<td>GM-CSF</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>Epo</td>
<td>Dispersed</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Epo</td>
<td>Dispersed</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>Epo</td>
<td>Pooled</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Epo</td>
<td>Single</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Epo</td>
<td>Pooled</td>
<td>2</td>
</tr>
</tbody>
</table>

*Numbers in brackets are the numbers of metaphases analyzed.
dependent on the data of the sample and of the freezing conditions. However, marked differences were not found in the action of the different growth factors in comparison to fresh cells.

In these patients, neither EPA alone nor EPA combined with Epo and/or GM-CSF had a clear effect on either the number of colonies or on cellular proliferation as expressed in the number of erythroid cells (CAI-positive cells) per culture (Figs 4 and 5). However, in all cases except patient A, Epo clearly enhanced both the plating efficiency and the size of the colonies in comparison to spontaneous colonies. In patient A, Epo significantly increased the number of colonies in comparison to unstimulated cultures in only two of eight experiments. In the remaining six experiments, the number of colonies was slightly but not significantly higher than in the absence of Epo. The results of a typical experiment are represented in Figs 4 and 5. In patients B, D, and E, colonies with a normal appearance were also observed after addition of Epo, but were rare (less than 1% of the morphologically abnormal colonies).
that of normal erythroid colonies. However, they were never frankly red. In patient C, Epo was also added to GM-CSF-stimulated cultures at day 4 of culture, and the plating efficiency was reduced approximately 30% in comparison to GM-CSF-stimulated cultures containing Epo at the onset of the cultures (Fig 6). This loss in the number of colonies was identical to the number of colonies obtained with Epo alone (Fig 6), and the remaining colonies corresponded to the biggest colonies under the optimal conditions.

Therefore, leukemic erythroid progenitors from patients D and E only responded to Epo, whereas those of patients A, B, and C responded maximally to the combination of GM-CSF and Epo. This result was confirmed by studying the relationship between the number of plated cells and the number of colonies. In patients D and E, a linear curve extrapolating to zero defined the relationship between the number of colonies and the number of plated cells when Epo was added alone. A similar curve was found in patient C only when cells were cultured in the presence of GM-CSF plus Epo (data not shown).

The effect of normal human serum and fetal calf serum was tested in all patients. In patients B and E, serum had no significant effect, but in patient C it clearly potentiated the effect of Epo. Surprisingly, the addition of serum markedly inhibited erythroid colony formation in patients A and D. In patient D, serum (both human and fetal calf) at a concentration as low as 40 µL/mL completely inhibited abnormal erythroid colony formation.

GM-CSF alone had a very significant effect in all patients (increasing up to ten times the number of colonies) except patients D and E. The colonies had the same appearance as spontaneous colonies but were larger.

In patients B and C, Epo and GM-CSF acted additively, increasing the number and the size of these colonies, and their combined action gave them an appearance similar to...
Finally, cells from patients were grown at low dilution (average of one cell per well) in individual wells, which resulted in the presence of one cell per well (Table 3). Spontaneous colonies were obtained with a plating efficiency of 1% in patients C and D and 5.7% in patient B. Results paralleled those previously observed in standard cultures. Specifically, progenitors from patient D only responded to Epo, whereas those from patients B and C maximally responded to the combination of Epo and GM-CSF.

Because autonomous growth was observed, we tried to determine whether leukemic cells were secreting a CSF or Epo. Conditioned medium by leukemic cells or crude cellular extracts were screened for such activities. In none of the patients was a CSF or Epo activity found when using normal human marrow cells as the target. In addition, when leukemic cells from patients C and D were used in an underlayer, they did not promote the growth of CFU-E. Radioimmunoassays for GM-CSF and Epo (kindly performed by Dr E. Goldwasser, University of Chicago) were negative on all conditioned media and cellular extracts.

Anti-Epo serum from 2 to 10 μL/mL was added to the cultures from patients B and C and did not prevent the growth of spontaneous erythroid colonies, whereas it blocked the action of exogenous Epo. In patient D, 5 μL of rabbit serum (immune or preimmune) completely inhibited colony growth. Therefore, rabbit anti-Epo IgG was added to the culture and did not block the spontaneous growth. Moreover, in these three patients, the addition of Epo antibodies did not prevent acquisition of GPA or of Hb by leukemic cells in culture. GM-CSF antiserum was added in culture to determine whether leukemic cells were secreting a CSF or Epo.

Table 3. Plating Efficiency of Leukemic Erythroid Progenitors at an Average of One Cell per Well

<table>
<thead>
<tr>
<th>Patient</th>
<th>Epo (1 IU/mL)</th>
<th>GM-CSF (100 pmoL/L)</th>
<th>GM-CSF + Epo (100 pmoL/L + 1 IU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>5.7</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>6</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cells were diluted to 10 cells/mL in serum-free cultures and plated in a 100 μL volume. Six hundred microwells for patient B and 300 microwells for patients C and D were plated without exogenous stimulating factor, whereas 200 microwells were plated in all the other culture conditions.
In animal models, three different mechanisms have been proposed to explain growth factor-independent proliferation. The first is autocrine secretion of the growth factor; the second is modification of the intracellular transmission pathway of the growth factors; and the third is modification of a growth factor receptor.

Previous studies in human AML have shown that leukemic and normal cells have similar growth requirements. This finding led to the suggestion that AML might be a growth factor-dependent rather than an autonomous neoplasm. Recently, Young and Griffin reported three cases of autonomous growth among 15 AML patients. Two of them were related to an autocrine secretion of GM-CSF. The experiments reported here did not afford any evidence for autocrine secretion of a hematopoietic growth factor because neither CSF activity nor Epo activity was detected in conditioned media from leukemic cells. In addition, GM-CSF or Epo antibodies did not block the growth of spontaneous colonies or even the terminal differentiation of leukemic cells. Therefore, these data suggest that one of the two other previously mentioned mechanisms may bypass the growth factor requirement. However, very recently in a few cases of AML, Young et al. have reported the presence of GM-CSF transcripts in the absence of detectable active CSF in conditioned media from leukemic cells. Future investigations will have to exclude the possibility that the Epo or another hematopoietic growth factor genes are constitutively expressed in some erythroleukemia without detection of the growth factor itself.

Further studies will be required to determine which mechanism is operating in human erythroleukemia.

Autonomous growth was not the only difference from normal cells. The human erythroleukemic cells also differ by a relative blockage in their terminal differentiation. This blockage is more or less important, depending upon the particular patient, but exogenous Epo facilitated terminal differentiation. Therefore, in erythroleukemia Epo had a differentiation action similar to G-CSF in AML. In contrast, GM-CSF did not induce more complete differentiation than the spontaneous one.

Finally, it has to be pointed out that in two cases normal serum from several species could inhibit or abolish the leukemic erythroid growth, which suggests the presence of a powerful inhibitor of this growth in serum. Experiments currently performed in patient D suggest that Transforming Growth Factor-β (TGF-β) is involved in this negative regulation (manuscript in preparation). Serum inhibitor of cell proliferation may also explain the absence of growth of some AML.

In conclusion, in five cases of erythroleukemia we showed that the leukemic erythroid clonogenic cells were the equivalent of CFU-E in two cases of de novo leukemia and BFU-E in three cases of CML blast crisis. These cells differed from normal cells by both an autonomous growth and a relative blockage in their terminal differentiation. The autonomous growth could not be explained by an autocrine secretion of Epo or another hematopoietic growth factor. From this study, it appears that human erythroleukemia can be compared with the avian model. In the chicken, two viral oncogenes act synergistically to cause erythroleukemia. The first one, v-erb B, gives the proliferative advantage, whereas the second one, v-erb A, blocks the erythroid cell terminal differentiation, thereby giving the phenotype of a CFU-E.

ACKNOWLEDGMENT
We are grateful to Dr A.E.W. Edwards (London) for providing LlCR-LON-R10 and LlCR-LON-R18, Dr Mannoni (Marseille, France) for H85, and Dr E. Goldwasser (Chicago) for performing the Epo-radio immunosassays.

We thank A.M. Dulac for preparation of the manuscript and the figures, J.M. Masse for photographic assistance, and J. Lewis for improving the manuscript.

REFERENCES
REGULATION OF LEUKEMIC ERYTHROID GROWTH

973

Effects of granulocyte-macrophage colony-stimulating factor and erythropoietin on leukemic erythroid colony formation in human early erythroblastic leukemias

MT Mitjavila, JL Villeval, P Cramer, A Henri, J Gasson, G Krystal, M Tulliez, R Berger, J Breton-Gorius and W Vainchenker