Erythrocyte phosphofructokinase (PFK) is one of the major regulators of glycolysis. Adenosine triphosphate (ATP) serves as an inhibitor as well as a substrate. Inhibition by ATP reduces the affinity of the enzyme for its other substrate, fructose-6-phosphate (F-6-P). Considering physiological concentrations of ATP and F-6-P in erythrocytes, the enzyme functions at only 0.1% of its capacity, which corresponds to about 10% of the glycolytic rate.

Although this inhibition by ATP is mediated by ATP-Mg\(^{2+}\) complex, which is less inhibitory than ATP, the normal intracellular activity of PFK is largely dependent on the action of positive effectors, including adenosine monophosphate (AMP), adenosine diphosphate (ADP), fructose-1,6-bisphosphate (F-1,6-P\(_2\)) and glucose-1,6-bisphosphate (G-1,6-P\(_2\)).

Fructose-2,6-bisphosphate (F-2,6-P\(_2\)) is present in the liver and is the most potent effector of hepatic PFK by releasing the ATP inhibition. Although human erythrocyte PFK was also strongly activated by F-2,6-P\(_2\), the absence of this metabolite in human erythrocytes has been reported.

The standard method to assay intracellular F-2,6-P\(_2\) requires heating the tissue or cells at 80°C in an alkaline solution. Our preliminary experiment showed that it was extremely difficult to eliminate hemoglobin using this method, which, to a great extent, interfered with the F-2,6-P\(_2\) assay system. In addition, chicken erythrocytes recently have been reported to contain this bisphosphorylated metabolite. Therefore, these findings prompted us to reevaluate F-2,6-P\(_2\) in human erythrocytes.

To test the possibility of its existence, we examined the enzyme’s ability to synthesize F-2,6-P\(_2\), fructose-6-phosphate,2-kinase (F-6-P,2-kinase) in the partially purified hemolysate and the effect of this metabolite on the rate-limiting enzymes.

MATERIALS AND METHODS

All reagents used were analytical grade. Commercial F-2,6-P\(_2\) from Sigma (St Louis) was found to be contaminated with 0.1 to 0.4% F-1,6-P\(_2\). Blood from a healthy volunteer was drawn into heparin and freed of white cells and platelets by passing it through a cellulose column. After washing with 0.85% NaCl, the cells were lyzed in the 10 mmol/L phosphate buffer, pH 7.0. The stroma-free hemolysate was obtained by centrifugation and applied to DE 52 batchwise chromatography to remove hemoglobin. The eluate was fractionated by adding ammonium sulfate. The fractions of 35% to 60% and 60% to 80% saturation were subjected to the following study after dialysis against 20 mmol/L HEPES buffer, pH 7.4.

F-6-P,2-kinase activity was measured as described elsewhere by assaying F-2,6-P\(_2\) synthesized from F-6-P in the presence of ATP. The reaction mixture comprised 20 mmol/L HEPES, pH 7.4, 10 mmol/L MgCl\(_2\), 1 mmol/L EDTA, 1 mmol/L dithiothreitol, 5 mmol/L ATP, various concentrations of F-6-P, and the enzyme. After 20 minutes' incubation at 37°C the reaction was terminated by adding 100 μL of 0.5 N NaOH followed by heating at 80°C for 20 minutes. After cooling and centrifuging, half of the supernatant was neutralized with acetic acid in the presence of 20 mmol/L HEPES. The formation of F-2,6-P\(_2\) was determined by measuring its stimulatory effect on pyrophosphate-phosphofructokinase (PPi-PFK) in the presence of 0.5 mmol/L pyrophosphate and 1 mmol/L F-6-P. Since F-2,6-P\(_2\) is easily destroyed under mild acid conditions, 0.5 N HCl was added to the other half of the supernatant. After standing at 25°C at a pH between 1 and 2 for ten minutes, the acid-treated supernatant was neutralized with NaOH and used as a control.

PFK and pyruvate kinase (PK) were assayed by the method of Beutler. Hexokinase was assayed in the absence and presence of its effectors by the previous method.

RESULTS

Figure 1 shows the formation of F-2,6-P\(_2\) from F-6-P in the presence of the various fractions prepared from hemolysate by ammonium sulfate fractionation. In the fraction of 35% to 60% saturation, F-2,6-P\(_2\) synthesis was seen, which was determined by the stimulation of PPI-PFK. In the control, stimulation was completely suppressed by preliminary treatment of the extract with HCl at pH 1 to 2. On the other hand, the fraction of 60% to 80% saturation showed no F-2,6-P\(_2\) formation.

Figure 2 shows the effect of F-2,6-P\(_2\) on PFK activity. Km for F-6-P in the absence and presence of 1 mmol/L F-2,6-P\(_2\) was 1.7 mmol/L and 0.7 mmol/L, respectively.

Figure 3 shows PFK activity as the function of F-2,6-P\(_2\) concentration. With the concentrations of both 0.5 mmol/L (Fig 3A) and 1.0 mmol/L F-6-P (Fig 3B), ~90% maximum activation was obtained at 10^{-6} mol/L F-2,6-P\(_2\) and the half-maximum activation was at 10^{-7} mol/L F-2,6-P\(_2\).

Table 1 shows the effect of F-2,6-P\(_2\) on hexokinase activity in the absence and presence of various inhibitors. No effect was detected.
F-2,6-P₂ is acid-labile and alkaline-stable. The standard method for the determination of the glycolytic intermediates in red cells, which requires acid-treatment of the cells, is not used. On the other hand, alkaline-treatment at 80°C is not applicable either, because hemoglobin remaining after the treatment strongly interfered with the assay system for F-2,6-P₂ (data not given). Therefore, our present work has been to test the possibility of its existence, namely the demonstration of the enzyme activity to synthesize F-2,6-P₂ and the activation of PFK by this metabolite.

As shown in Fig. 1, the fraction of 35% to 60% saturation was capable of synthesizing F-2,6-P₂ from F-6-P and ATP. The determination of this bisphosphorylated metabolite was based on its ability to stimulate PPi-PFK. Although it is not a direct determination, it is an established method. Well-known activators for PPi-PFK, such as ADP, AMP, F-6-P, F-1,6-P₂ and G-1,6-P₂, are all acid-stable, while F-2,6-P₂ is acid-labile and alkaline-stable.

DISCUSSION

F-2,6-P₂ is acid-labile and alkaline-stable. The standard method for the determination of the glycolytic intermediates in red cells, which requires acid-treatment of the cells, is not used. On the other hand, alkaline-treatment at 80°C is not applicable either, because hemoglobin remaining after the treatment strongly interfered with the assay system for F-2,6-P₂ (data not given). Therefore, our present work has been to test the possibility of its existence, namely the demonstration of the enzyme activity to synthesize F-2,6-P₂ and the activation of PFK by this metabolite.

As shown in Fig. 1, the fraction of 35% to 60% saturation was capable of synthesizing F-2,6-P₂ from F-6-P and ATP. The determination of this bisphosphorylated metabolite was based on its ability to stimulate PPi-PFK. Although it is not a direct determination, it is an established method. Well-known activators for PPi-PFK, such as ADP, AMP, F-6-P, F-1,6-P₂ and G-1,6-P₂, are all acid-stable, while F-2,6-P₂ is acid-labile and alkaline-stable.

Table 1. Effect of F-2,6-P₂ on HK Activity in the Presence of the Inhibitors

<table>
<thead>
<tr>
<th>Additives</th>
<th>F-2,6-P₂ (μmol/L)</th>
<th>None (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-6-P (25 μmol/L)</td>
<td>36.0 ± 1.1</td>
<td>38.3 ± 2.1</td>
</tr>
<tr>
<td>ADP (3.0 mmol/L)</td>
<td>65.0 ± 4.0</td>
<td>69.1 ± 0.9</td>
</tr>
<tr>
<td>G-1,6-P₂ (200 μmol/L)</td>
<td>80.7 ± 3.4</td>
<td>84.6 ± 2.8</td>
</tr>
</tbody>
</table>

Assay mixture for HK consisted of 50 mmol/L Tris-HCl, pH 8.0, containing 5 mmol/L MgCl₂, 0.2 mmol/L NADP, 1.0 mmol/L ATP, 0.1 U/mL G-6-PD and 50 μmol/L glucose (Km of HK for glucose) in the absence and presence of the physiological inhibitors. The mean values (±SD) were obtained from four to six independent experiments. No effects were observed even at 5 mmol/L glucose (data not given).
acid-labile and alkaline-stable. Up to now there have been no other compounds possessing these two properties.10 In the control of the 35\% to 60\% saturation fractionation, F-2,6-P_2 was completely destroyed by the acid-treatment. These results indicate that human red cells contain F-6-P,2-kinase activity.

F-2,6-P_2 has been reported to be an effector of several enzymes in glycolysis, glycogenolysis, and gluconeogenesis.12,13 However, erythrocytes lack the latter two pathways. Of the eleven enzymes in the glycolytic pathway, three appear to be particularly important: hexokinase, PFK, and PK. Hexokinase is the least active enzyme in the series and, therefore, often rate-limiting. Hexokinase is partially inhibited by some glycolytic intermediates and its activators act by releasing the inhibition.7 As shown in Table 1, F-2,6-P_2 had no effect on the hexokinase activity even in the presence of these inhibitors such as G-6-P, G-1,6-P_2 and ADP.

PK from rat liver (L-type PK) has been reported to be activated by F-2,6-P_2.14 Since erythrocyte PK is the same genetic product as L-type PK and has immunologically and kinetically similar properties, the activation of erythrocyte PK similar to that of L-type PK had been expected. However, as we show, erythrocyte PK was activated not only by nontreated commercial F-2,6-P_2, but also by acid-treated F-2,6-P_2, indicating that this activation was not due to authentic F-2,6-P_2. As commercial F-2,6-P_2 contains a minute amount of F-1,6-P_2, the activation of L-type PK as well as erythrocyte PK may be explained by the contaminant.

F-2,6-P_2 has been known to activate erythrocyte PFK.4 However, the concentration for the half-maximum activation obtained here (10-6 mol/L) was lower than that of the previous report (10-4 mol/L)4 and 10-6 mol/L F-2,6-P_2 was high enough to activate PFK up to 90\% of its maximum effect (Fig 3). F-2,6-P_2 used here was also contaminated with F-1,6-P_2, but the concentration of the contaminant was too low to affect PFK activity.

From these results, it is strongly suggested that F-2,6-P_2 may be one of the intracellular constituents and may contribute to the regulation of PFK activity, and consequently, glycolysis in human erythrocytes.

REFERENCES

Fructose-6-phosphate,2-kinase activity in human erythrocytes
S Fujii, M Matsuda, S Okuya, Y Yoshizaki, Y Miura-Kora and T Kaneko

Updated information and services can be found at:
http://www.bloodjournal.org/content/70/4/1211.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml