CONCISE REPORT

Identification of Normal Human Peripheral Blood Monocytes and Liver as Sites of Synthesis of Coagulation Factor XIII a-Chain

By Laurie J. Weisberg, Donny T. Shiu, Paul R. Conkling, and Marc A. Shuman

Factor XIII is the fibrin-stabilizing factor that covalently cross-links fibrin monomers into a stable fibrin clot. The plasma form of factor XIII is a heterodimer, α2β2, consisting of two α-chains and two β-chains: the intracellular form, such as in platelets and placenta, is a dimer, α2, consisting of α-chains only. The catalytic function of factor XIII, a transglutaminase, resides in the α-chain. To address questions regarding sites of synthesis of factor XIII α-chain, an EcoRI restriction fragment from the protein-coding region of the factor XIII α-chain cDNA was used as a probe for Northern blot analysis. The cDNA probe showed hybridization with a single ~4.0-kilobase (kb) message in poly (A)+ mRNA prepared from normal human peripheral blood monocytes and normal human liver. The results demonstrate conclusively that factor XIII α-chains are actively synthesized in circulating monocytes and in liver. To our knowledge, these data represent the first demonstration of synthesis of any blood coagulation factor in primary uncultured and unstimulated monocytes or macrophage cells.

45% Dulbecco's modified Eagle's medium (DMEM, GIBCO, Grand Island, NY) 40% heat-inactivated fetal bovine serum, and 5% dimethylsulfoxide. They were slowly frozen in this medium and stored at -<~100°C in liquid nitrogen vapor. Immediately before RNA preparation, the monocytes were thawed by incubation in a 37°C water bath for 2 minutes, and were washed three times in prewarmed PBS.

Tissue preparation. Fresh normal human liver, obtained at the time of an open liver biopsy procedure performed for other reasons, was homogenized in the presence of 5 mol/L of guanidine monothiocyanate lysis buffer11 in a Polytron blender. Frozen placental tissue was similarly homogenized in a Polytron blender; no homogenization place before guanidine monothiocyanate was added to the specimen.

Monocytes, after thawing as described above, were homogenized by vigorous vortexing in the presence of guanidine monothiocyanate.

RNA preparation. The guanidine monothiocyanate/tissue homogenates were precipitated in 4 mol/L of LiCl, and RNA was prepared according to the method of Cathala and colleagues.15 The poly (A)+ mRNA fraction was selected by elution from an oligo (dT)-cellulose column.14

Northern blot analysis. Poly (A)+ mRNA was electrophoresed on a 1% agarose 2.2 mol/L formaldehyde gel and blotted to nitrocellulose. The filters were hybridized overnight at 42°C in 50% formamide, 10% dextran sulphate, 1 x Denhardt's solution, 3 x SSC, 50 mmol/L of NaH2PO₄, 200 μg/mL of sheared salmon sperm DNA, 150 μg/mL of yeast RNA. The molecular probe was a 630-base pair (bp) EcoRI restriction fragment of the cDNA for factor XIII α-chain14 (Fig 1), labeled with [α-32P]dCTP (American, Arlington Heights, IL) by calf thymus DNA priming. Following hybridization, the filters were rinsed once at room temperature in 2 x SSC, and then washed twice at 50°C in 0.1 x SSC, 0.1% sodium dodecyl sulfate (SDS). The hybridized filters were subjected to autoradiography at -70°C using Kodak XAR-2 film and DuPont Cronex intensifying screens.

Materials and Methods

Monocyte isolation. Human peripheral blood monocytes were isolated from a normal donor plateletpheresis residue bag. Mononuclear cells were separated on Ficoll-Hyphaque gradients39 (Ficoll-Paque, Pharmacia, Piscataway, NJ) and washed in phosphate-buffered saline (PBS) + 10 mmol/L of EDTA. Monocytes were separated from lymphocytes by discontinuous Percoll (Pharmacia) density gradient sedimentation,11 and again washed in PBS + 10 mmol/L of EDTA. The monocytes were incubated twice in pooled human serum + 10 mmol/L of EDTA at 37°C for 15 minutes to remove platelets. After further washing in PBS + 10 mmol/L of EDTA, Wright's stain and esterase stain showed 96% monocytes, 4% lymphocytes, and no visible platelets. The cells were washed in 45% Dulbecco's modified Eagle's medium (DMEM, GIBCO, Grand Island, NY) 40% heat-inactivated fetal bovine serum, and 15% dimethylsulfoxide. They were slowly frozen in this medium and stored at -<~100°C in liquid nitrogen vapor. Immediately before RNA preparation, the monocytes were thawed by incubation in a 37°C water bath for 2 minutes, and were washed three times in prewarmed PBS.

Tissue preparation. Fresh normal human liver, obtained at the time of an open liver biopsy procedure performed for other reasons, was homogenized in the presence of 5 mol/L of guanidine monothiocyanate lysis buffer11 in a Polytron blender. Frozen placental tissue was similarly homogenized in a Polytron blender; no homogenization place before guanidine monothiocyanate was added to the specimen.

Monocytes, after thawing as described above, were homogenized by vigorous vortexing in the presence of guanidine monothiocyanate.

RNA preparation. The guanidine monothiocyanate/tissue homogenates were precipitated in 4 mol/L of LiCl, and RNA was prepared according to the method of Cathala and colleagues.15 The poly (A)+ mRNA fraction was selected by elution from an oligo (dT)-cellulose column.14

Northern blot analysis. Poly (A)+ mRNA was electrophoresed on a 1% agarose 2.2 mol/L formaldehyde gel and blotted to nitrocellulose. The filters were hybridized overnight at 42°C in 50% formamide, 10% dextran sulphate, 1 x Denhardt's solution, 3 x SSC, 50 mmol/L of NaH2PO₄, 200 μg/mL of sheared salmon sperm DNA, 150 μg/mL of yeast RNA. The molecular probe was a 630-base pair (bp) EcoRI restriction fragment of the cDNA for factor XIII α-chain14 (Fig 1), labeled with [α-32P]dCTP (American, Arlington Heights, IL) by calf thymus DNA priming. Following hybridization, the filters were rinsed once at room temperature in 2 x SSC, and then washed twice at 50°C in 0.1 x SSC, 0.1% sodium dodecyl sulfate (SDS). The hybridized filters were subjected to autoradiography at -70°C using Kodak XAR-2 film and DuPont Cronex intensifying screens.

From the Department of Medicine and Cancer Research Institute, University of California, San Francisco; and the Department of Medicine, Duke University Medical Center, and Durham VA Medical Center, Durham, NC.

Submitted April 4, 1987; accepted April 21, 1987.

Supported by Grants No. HL 01499 and HL 21403 from the National Institutes of Health, Bethesda, MD.

Address reprint requests to Laurie J. Weisberg, MD, Cancer Research Institute, Box 0128, Room M-1282, University of California, San Francisco, CA 94143.

© 1987 by Grune & Stratton, Inc.

0006-4971/87/7002-0042$3.00/0

RESULTS

In the first experiment, RNA was isolated from human peripheral blood monocytes and, as a positive control, from frozen human placental tissue. One of our EcoRI restriction fragments from the cDNA for factor XIII, previously described, was 630 bp long (Fig 1) and was located within the protein-coding region. This fragment was 32P-radiolabeled and used as a probe for Northern blot analysis of the monocyte and placental RNA samples. The autoradiogram (Fig 2) shows that there is a single ~4.0-kb message for factor XIII a-chain in human peripheral blood monocytes and placenta. Poly (A)+ mRNA from K562 cells (human chronic myelogenous leukemia, ATCC CCL 243) showed no hybridization. K562 cells were chosen because they express platelet glycoproteins, suggesting that they might synthesize factor XIII a-chain, another platelet protein.

In the second experiment, the same 32P-radiolabeled probe was hybridized to poly (A)+ mRNA from fresh human liver, again using placental poly (A)+ mRNA as a positive control and K562 cell poly (A)+ mRNA as a negative control for Northern blot analysis. Autoradiography (Fig 3) demonstrates the presence of a single ~4.0-kb message for factor XIII a-chain in human liver and placenta.

DISCUSSION

Because monocytes and macrophages are phagocytic cells, identifying factor XIII a-chains intracellularly or on the cell surface would not exclude the possibilities that the a-chains were endocytosed or adsorbed from the plasma rather than synthesized directly. Moreover, a-chains in peripheral blood monocytes may represent protein previously synthesized in bone marrow monocyte precursors rather than in the mature cells themselves. The data of the present study (Fig 2) conclusively demonstrate primary peripheral blood monocytes as a site of synthesis of factor XIII a-chains. The intensity of hybridization of our 32P-radiolabeled cDNA probe is approximately equal for the monocyte (lane A) and placental (lane B) poly (A)+ mRNA samples; since the amount of RNA applied to the gel was 100 times as great from monocytes (1 µg) as from placenta (0.01 µg), we estimate that an ~100-fold greater relative abundance of message for factor XIII a-chain exists in placenta than in peripheral blood monocytes. Platelets have factor XIII a-chains, but synthesis of protein by platelets has not been convincingly demonstrated. Even if a small amount of megakaryocyte-derived mRNA persisted in circulating platelets, our monocyte preparation appeared to be entirely free of platelet contamination, thus eliminating this potential cause of false positive results.

To our knowledge, these data represent the first demonstration of synthesis of any blood coagulation factor in primary uncultured and unstimulated monocytes or macrophage cells. Although several studies report identification of factor XIII a-chain protein in such cells, demonstration of actual synthesis of the protein was performed on a tissue culture cell line (U937, a human monocytelike cell line).
Several studies have reported monocyte-macrophage synthesis of other coagulation factors. Synthesis of factor VII by human alveolar macrophages in vitro was demonstrated on cultured cell monolayers. Increased expression of factor VII protease activity, possibly representing synthesis, was shown in cultured human peripheral blood monocytes stimulated with bacterial lipopolysaccharide, an endotoxin, but not in freshly isolated cells or unstimulated cultured cells. Mouse peritoneal macrophages synthesized factors II, VII, IX, and X when grown in tissue culture. These previous studies were performed on mononcitic cell lines, fresh monocytes or macrophage cells grown in tissue culture, or stimulated cells, to demonstrate synthesis of the clotting factors. Based on our observation that normal, unstimulated monocytes synthesize factor XIII a-chains, this enzyme is likely to have an important function under physiologic conditions.

The function of factor XIII a-chains in circulating monocytes is uncertain. Factor XIII is a transglutaminase enzyme that covalently cross-links fibrin monomers and stabilizes the fibrin clot. In addition, it has several other substrate specificities and has been shown to cross-link collagen, fibronectin, thrombospondin, Factor V, and von Willebrand's factor. The factor XIII a-chains synthesized in monocytes might be a readily available source of transglutaminase activity in areas of vascular endothelial injury for processes such as clot retraction and wound healing. As monocytes exit the vascular spaces and enter tissues to become macrophages, they may be expected to carry with them the ability to synthesize factor XIII a-chains and to participate in similar processes in areas of tissue inflammation.

Our data demonstrate human liver as a site of synthesis of factor XIII a-chains (Fig 3). More than 100 times as much poly (A) mRNA from liver (lane A) as from placenta (lane B) was applied to the gel (10 and 0.09 μg, respectively), yet hybridization was approximately five times more intense for the placental sample. This result indicates that there is an ~500-fold greater relative abundance of message for factor XIII a-chain in the placenta than in the liver. Thus, the results provide a possible explanation for the finding by Grundmann and colleagues, who reported hybridization of a factor XIII a-chain cDNA fragment to poly (A) mRNA from human placenta but not to poly (A) mRNA from human liver. In that study, equal quantities (4 μg) of poly (A) mRNA from each tissue source were probed, and hybridization to the liver RNA appeared to be negative.

Some investigators have found factor XIII a-chain protein in human and rabbit hepatocytes and the hepatoma cell line Hep G2, but others did not detect the protein in human hepatocytes. A variety of techniques were used for these studies, including enzyme-labeled antibody staining, identification of protein by fluorescent antibody binding and measurement of synthesis by radioimmunoassay and [14C] leucine incorporation in isolated hepatocytes. Rat hepatocytes have several other specificities and has been shown to cross-link collagen, fibrinogen, Factor V, von Willebrand's factor, and thrombospondin. Factor XIII a-chains synthesized in monocytes might have a greater concentration of a-chain protein than do hepatocytes, thus appearing positive by an immunoperoxidase technique while hepatocytes appear negative. To identify the specific cells in liver tissue that synthesize factor XIII a-chain, we have begun work on in situ hybridization using cDNA probes.

ACKNOWLEDGMENT

We thank Drs Dorothy Bainton and Paula Tracy for helpful discussions, Dr Paul Bray for providing the K562 cell RNA, and James Harris for preparation of the manuscript.

REFERENCES

13. Grundmann U, Amann E, Zettlmeissl G, Küpper HA: Char-

Identification of normal human peripheral blood monocytes and liver as sites of synthesis of coagulation factor XIII α-chain

LJ Weisberg, DT Shiu, PR Conkling and MA Shuman