Development of Large Numbers of Mast Cells at Sites of Idiopathic Chronic Dermatitis in Genetically Mast Cell-Deficient WBB6F1-W/W' Mice

By Stephen J. Galli, Naoki Arizono, Tatsuo Murakami, Ann M. Dvorak, and James G. Fox

The normal skin and other tissues of adult mast cell-deficient WBB6F1-W/W' or WCB6F1-SI/SI' mice contain <1.0% the number of mast cells present in the corresponding tissues of the congenic normal (+/+) mice. As a result, genetically mast cell-deficient WBB6F1-W/W' or WCB6F1-SI/SI' mice are widely used for studies of mast cell differentiation and function. We found that mast cells developed at sites of idiopathic chronic dermatitis in WBB6F1-W/W' mice and that the number of mast cells present in the skin of WBB6F1-W/W' mice was proportional to the severity of the dermatitis (in ear skin, there were 3 ± 4 mast cells/mm² of dermis at sites of severe dermatitis vs 9 ± 3 at sites of mild dermatitis, 0.8 ± 0.3 in skin without dermatitis, and 10 ± 7 in the normal skin of congenic WBB6F1-+/+ mice; in back skin, the corresponding values were 2.0 ± 0.6, 1.1 ± 0.9, 0.025 ± 0.025, and 26.2 ± 3.2). The development of mast cells was a local, not systemic, consequence of the dermatitis. Thus, WBB6F1-W/W' mice with severe dermatitis lacked mast cells in skin not showing signs of dermatitis and also in the peritoneal cavity, stomach, cecum, and tongue. Idiopathic chronic dermatitis was not associated with the local development of mast cells in WCB6F1-SI/SI' mice, a mutant whose mast cell deficiency is due to a mechanism distinct from that of WBB6F1-W/W' mice. These findings may have implications for understanding the nature of the mast cell deficiency in WBB6F1-W/W' and WCB6F1-SI/SI' mice and for the use of these mutants to analyze mast cell differentiation and function.

ITAMURA AND HIS ASSOCIATES reported that WBB6F1-W/W' mice, which were known to exhibit macrocytic anemia, sterility, and a lack of hair pigmentation,1,2 were also profoundly deficient in tissue mast cells.3 The skin of adult W/W' mice contains <1% the number of mast cells present in the skin of the congenic normal (+/+) mice, and no mast cells whatsoever have been detected in the following organs/sites: bone marrow, spleen, thymus, brain, heart, lung, kidney, bladder, liver, stomach, small intestine, cecum, mesentery, peritoneal cavity, or hindlimb skeletal muscle.3,4

The gene products affected by the mutations in W/W' mice and the precise mechanisms by which these mutations produce mast cell deficiency are unknown.5,6,10 But it has been demonstrated that W/W' mice provide a hospitable environment for the differentiation/maturation of mast cells from competent, genetically compatible precursors. These include bone marrow cells derived from WBB6F1-+/+ or C57BL/6-+/+ mice as well as cultured, growth factor-dependent mast cells derived from these animals.3,7,9,11 In addition to demonstrating that the mast cell deficiency of WBB6F1-W/W' mice reflects a quantitative and/or qualitative abnormality of bone marrow-derived mast cell precursors, the finding that bone marrow cells or cultured mast cells derived from WBB6F1-+/+ mice can restore mast cell populations to W/W' mice greatly increases the value of these mutants for studies of mast cell biology.7,11

In part because a profound deficiency of mast cells has been regarded as a stable aspect of the phenotype of adult WBB6F1-W/W' mice, these mutants and their normal (+/+) littermates have been used in a wide variety of investigations concerning mast cell function in immediate- and delayed-type hypersensitivity reactions, parasite immunity, acute inflammation, thromboembolic phenomena, reparative processes, and tumor biology.5,5,10 We now report that W/W' mice can develop significant populations of cutaneous mast cells in association with a form of idiopathic chronic dermatitis that occurs in mice of the C57BL/6 and related genetic backgrounds. This finding underscores the need to ascertain, in studies using mast cell-deficient mice for evaluation of mast cell biology, whether the particular experimental model used can induce the development of mast cells in the W/W' mice. It also may have implications for understanding the mechanism of mast cell deficiency in these mutants. Some of our results have been reported in abstract form.11*

MATERIALS AND METHODS

Mice. Male mast cell-deficient W/W' mice and their normal (+/+) littermates (WB/ReJ-W'/ × C57BL/6-J-+/+) F1-W/W', +/+) and male mast cell-deficient SI/SI' mice and their normal (+/+) littermates (WC/ReJ-SI/ × C57BL/6-J-SI'/ +)F1-SI/SI', +/+) were purchased from the Jackson Laboratories, Bar Harbor, ME, at 4 to 8 weeks of age. One group of pooled littermate WBB6F1-W/W', +/+) mice and a group of pooled littermate WCB6F1-SI/SI', +/+) mice were housed at the Beth Israel Hospital (BIH) Animal Care Facility. Another group of pooled littermate W/W' and congenic +/+ mice were housed at the Massachusetts Institute of Technology (MIT) Animal Care Facility. Both facilities are fully accredited by the American Association for Accreditation of Laboratory Animal Care (AAALAC), and the mice were maintained in accordance with guidelines established by the BIH and MIT Committees on Animal Research and those prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (DHHS publication 86-23, revised 1985).

From the Departments of Pathology, Beth Israel Hospital and Harvard Medical School, and the Charles A. Dana Research Institute, Beth Israel Hospital, Boston; and the Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge.

Submitted October 27, 1986; accepted January 21, 1987.

Supported in part by US Public Health Service Grants No. AI 20922, Al 22674, Al 23990, CA 28834, and RR 01046.

Address reprint requests to Stephen J. Galli, MD, Department of Pathology, Beth Israel Hospital, 330 Brookline Ave, Boston, MA 02215.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 US.C. §1734 solely to indicate this fact.

© 1987 by Grune & Stratton, Inc.
Development of chronic dermatitis. Mice of the C57BL/6 and related strains develop a noncontagious and progressive severe dermatitis, apparently unrelated to known infections or nutritional factors. Murphy reported that SI/Sf and W/W' mutants were more susceptible to the development of such dermatitis than the congenic normal (+/+) animals. The dermatitis characteristically becomes apparent in older mice and presents as areas of erythema, hair loss, and cutaneous thickening, sometimes associated with the development of ulceration, that involves the skin of the ears and adjacent head, neck, dorsal part of the back, and axilla.

Histologic assessment of dermatitis and morphological evaluation and quantitation of mast cells. Mice exhibiting evidence of dermatitis involving the ears and control mice with grossly normal ear skin were killed by cervical dislocation. The ears were then amputated and fixed for 1-μm-thick, Epon-embedded, Giemsa-stained sections or for transmission electron microscopy as previously described. We also determined whether the mast cells that appeared at sites of idiopathic dermatitis in W/W' mice stained with berberine sulfate, a fluorescent cationic dye that binds to the heparin in the cytoplasmic granules of mature "connective tissue-type" mast cells such as those normally present in the skin of mice. For these studies, representative skin specimens were fixed, processed, and stained with berberine sulfate (Sigma Chemical Co, St Louis) as previously described and examined in a Zeiss fluorescence microscope (Carl Zeiss, Inc. Thornwood, NY) equipped for epillumination. Biopsy samples were also obtained from areas of W/W' back skin exhibiting evidence of dermatitis as well as from the grossly normal back skin of W/W' and congenic +/+ mice.

In some cases, additional, grossly normal tissues of W/W' mice with severe dermatitis were prepared for 1-μm sections (normal back skin, tongue, stomach, cecum), and toluidine blue-stained cytocentrifuge preparations were made of the resident peritoneal cells. Peritoneal cells were collected by lavaging the peritoneal cavity with 3 mL of Hanks' balanced salt solution (HBSS, Gibco, Grand Island, NY) containing 0.1% bovine serum albumin (Sigma).

For quantitation of mast cell numbers, the coded 1-μm sections were examined by light microscopy at 400×, and the number of mast cells present was recorded. The same slide was then projected onto a piece of paper with a Leitz Type XI C Xenon slide projector (Leitz, Rockleigh, NJ), and the following structures were traced: epidermal surface, dermal-epidermal junction, cartilage (in ear specimens), or panniculus carnosus (in back skin specimens). The area of dermis (mm²) was determined by analyzing the projected images using a MOP-3 digitizer (Zeiss) interfaced to an HP86 computer (Hewlett-Packard Co, Palo Alto, CA). The area of dermis for ear specimens was taken as the total area of ear minus the sum of the area of epidermis plus the area of cartilage; for back skin specimens, the area of dermis was taken as the total area between the dermal-epidermal junction and the superficial surface of the panniculus carnosus. The number of mast cells was expressed as the number of cells per square millimeter of dermis. Differences in mast cell counts were examined for statistical significance by the Mann Whitney U test (two-tailed).

RESULTS

Mast cells occur at sites of chronic dermatitis in WBB6F1-W/W' mice. We first examined 1-μm, Epon-embedded, Giemsa-stained sections prepared from W/W' mouse ears exhibiting gross evidence of dermatitis as well as sections of grossly normal ears from W/W' and congenic +/+ mice. Based on the histologic findings, the dermatitis was classified as severe or mild (Fig 1). Ears with severe dermatitis exhibited marked epidermal and dermal thickening, dermal infiltration of leukocytes, and numerous mast cells (Fig 1A to E). By transmission electron microscopy (Fig 1E), the ultrastructure of mast cells at sites of severe dermatitis in W/W' mice closely resembled that reported previously for normal mouse mast cells. Moreover, these mast cells stained with berberine sulfate (Fig 1E, insert), a fluorescent dye that binds to the heparin in the cytoplasmic granules of mature skin mast cells. Ears with mild dermatitis exhibited slight epidermal thickening, little or no dermal thickening, sparse leukocytic infiltration, and occasional mast cells (Fig 1F).

We quantitated dermal mast cells in the ears of W/W' mice with severe or mild dermatitis as well as in the ears of normal W/W' or congenic +/+ mice (Table 1). Two different groups of pooled littermate W/W' mice were analyzed. One group (group A) was housed exclusively at B1H; these mice were killed at ≈8 months of age. The other group (B), which included pooled littermate WBB6F1-+/+ mice, was housed exclusively at MIT; these mice were killed at ≈15 months of age. Approximately 50% of the W/W' mice in each group exhibited gross evidence of dermatitis involving at least one ear. By contrast, none of the pooled littermate +/+ mice in group B developed evidence of dermatitis. In both groups, the ears of representative normal W/W' mice contained rare dermal mast cells (0.8/μm² of dermis). This value, representing <1% of the number of mast cells present in the ears of the congenic +/+ mice, is in good agreement with previous reports. However, dermal mast cells were increased approximately 11-fold at sites of mild dermatitis and 41-fold at sites of severe dermatitis (both values, P < .001 v the value in normal ears of W/W' mice). The number of mast cells in W/W' mouse ears with severe dermatitis, when expressed as the number per square millimeter of dermis, was significantly less than the number in the ears of +/+ mice (33.0 ± 7.5 v 100.0 ± 7.3, P < .001). But the distribution of mast cells in W/W' ears with dermatitis was uneven, with some areas of dermis containing many mast cells and others containing none (Fig 1B to D). Thus, the concentration of mast cells in some regions of W/W' ears with dermatitis probably approached or exceeded that in the normal ears of the congenic +/+ mice.

The development of mast cells at sites of chronic dermatitis is a local, not a systemic, consequence of the dermatitis. Two findings indicated that the development of mast cells at sites of dermitis reflects a local consequence of the dermatitis. First, the number of dermal mast cells that developed in the ears of W/W' mice appeared to depend on the severity of dermatitis. This was true whether all ears exhibiting similar degrees of dermatitis were pooled, as in Table 1, or when the three W/W' mice that exhibited different degrees of involvement of their two ears were considered separately. The extent of dermitis (none, mild, severe) and mast cell counts (number per square millimeter of dermis) for the left (L) and right (R) ears of these mice were as follows: mouse 14, L: mild, 24.1, R: none, 1.5; mouse 19, L: severe, 25.2, R: mild, 4.9; mouse 28, L: severe, 33.3, R: mild, 5.2.
The number of mast cells at sites of chronic dermatitis varies according to anatomic site. Many of the W/W^v mice analyzed in Table 1 exhibited dermatitis involving the cephalad regions of the back as well as the ears. We therefore sampled the affected and unaffected back skin of these mice for histologic analysis and mast cell counts. Dermal mast cell counts in the normal back skin of both W/W^v and congenic
+/. mice (Table 2) were lower than those in the ear skin of mice of the same genotype (Table 1). At sites of severe dermatitis, the numbers of dermal mast cells in W/W" mice were significantly elevated compared with the baseline levels (2.0 ± 0.6 v 0.025 ± 0.025 mast cells/mm² of dermis, an 80-fold increase). Nevertheless, the number of mast cells at sites of severe dermatitis involving the back skin was only 6% of the corresponding figure for ear skin with severe dermatitis (2.0 ± 3.3 mast cells/mm², respectively, P < .001).

Chronic dermatitis is not associated with the local development of mast cells in WCB6F1-S1/S1a mice. Like WBB6F1-W/W" mice, WCB6F1-S1/S1a mice are semisyngenic to C37BL/6 mice,22,23 and SI/S1a and W/W" mice are similar in phenotype: both have a macrocytic anemia, lack cutaneous melanocytes, are sterile, and exhibit a profound deficiency in mast cells.22,23 SI/S1a mice also spontaneously develop chronic dermatitis.13 However, the mechanisms of mast cell deficiency in W/W" and SI/S1a mice are different.22,23 W/W" mice have a defect of hematopoietic stem cells (CFU-S)22,23; their mast cell deficiency (and anemia) can be repaired by intravenous (IV) transplantation of bone marrow cells derived from the congenic +/- mice.6,8 By contrast, SI/S1a mice have apparently normal hematopoietic stem cells.24 The mast cell deficiency of this mutant is thought to reflect an abnormality in the microenvironmental factors promoting mast cell differentiation/maturatation,6,21 and neither the anemia nor the mast cell deficiency of SI/S1a mice can be cured by IV transplantation of the congenic +/- bone marrow cells.21

Twelve SI/S1a mice were sacrificed at 12 months of age; 2 had no evidence of dermatitis, 3 had mild dermatitis, and 7 had severe dermatitis involving at least one ear and/or the adjacent neck and back skin. Virtually no mast cells were identified in the ear or back skin of SI/S1a mice with dermatitis (Table 3). In other respects (extent of epidermal and dermal changes, inflammatory cell infiltration), the histologic features of the dermatitis in SI/S1a and W/W" mice were similar.

DISCUSSION

We found that large numbers of mast cells developed at sites of idiopathic chronic dermatitis in W/W" mice. Several lines of evidence indicated that the development of mast cells at a site of dermatitis was a local, not a systemic, effect of the dermatitis. In ears with dermatitis, the number of dermal mast cells was greater in ears with severe dermatitis than in ears with mild dermatitis, and the greatest concentrations of mast cells in individual ears were at the sites exhibiting the most severe dermatitis. In a mouse with unilateral dermatitis, only the affected ear exhibited increased numbers of mast cells. Finally, no mast cells were detected in the normal skin, forestomach, glandular stomach, cecum, or peritoneal cavity of four W/W" mice that had large numbers of mast cells at a site of severe dermatitis.

Although chronic dermatitis was associated with significantly elevated dermal mast cell counts in both the affected ears and back skin of W/W" mice, the elevation of mast cell numbers was greater in the ears than in back skin. Thus, mast cell counts were 33.0/mm² of dermis in W/W" mouse.
ears with severe dermatitis (33.0% of the corresponding value for normal +/+ mice) vs 2.0/mm² of dermis in W/W· mouse back skin with severe dermatitis (7.6% of the corresponding value for normal +/+ mice). In part, this finding may be related to the fact that back skin normally contains fewer mast cells than ear skin (26.2 ± 100 mast cells/mm² of dermis in normal +/+ mice [P < .001], 0.025 ± 0.8 mast cell/mm² of dermis in normal W/W· mice [P < .1]). If the differences in the baseline mast cell counts in the normal ear and back skin of W/W· mice are taken into account, the elevations of mast cell numbers associated with chronic dermatitis are similar in the two anatomic sites (a 41-fold elevation over the normal value in the ear and an 80-fold elevation over the normal value in the back skin). There may be an interesting parallel to this finding in the effect of certain W· locus mutations on melanocytes. Most mice with a double dose of mutations at the W· locus totally lack cutaneous melanocytes. But certain of these mutants (eg, W/W·, W/W·) routinely or occasionally exhibit some pigmentation of the ear skin.

The etiology of the chronic dermatitis that occurs in mice of the C57BL/6 and related strains is unknown. Attempts to identify congenitally infectious agents have been unsuccessful, and neither histologic nor microbiologic examination (data not shown) of the mice used in our experiments revealed any clues concerning the pathogenesis of the problem. In accord with previous studies of Sl/Sld and WV/WV mice, we found that our W/W· or Sl/Sld mice developed a higher incidence of idiopathic dermatitis than did the congenic +/+ mice. Whether the increased susceptibility of the mutants for the development of idiopathic dermatitis has any relationship to the mast cell deficiency expressed by W/W· and Sl/Sld mice is unclear.

The findings reported here are important for two reasons. First, they offer a new perspective concerning the nature of the mast cell abnormality expressed by W/W· mice. Although it is well known that the tissues of W/W· mice permit mast cell differentiation/maturation from competent precursor cells such as those derived from congenic +/+ mice, our data represent clear evidence that the mast cell deficiency of WBB6F1/W/W· mice can undergo local self-repair in vivo. This finding must reflect a response of the small number of mast cells present in the normal skin of W/W· mice and/or W/W· mast cell precursors to a dermatitis-associated alteration of the W/W· skin microenvironment. It is of interest, in this context, that several investigators have reported that mast cells of W/W· origin can be generated in vitro when hematopoietic cells of W/W· mice are cultured in media containing high levels of interleukin 3 and other growth factors. Moreover, such in vitro analysis indicates that the relative concentrations of mast cell precursors in the bone marrow, spleen, and peripheral blood of W/W· mice are similar to those in the congenic +/+ mice. These findings raise the possibility that one microenviron-mental alteration at the sites of chronic dermatitis that might contribute to the local development of W/W· mast cells is the production of growth factors similar to those present in the in vitro systems.

On the other hand, W/W· mast cells generated in suspension cultures exhibited diminished proliferative potential in vitro and failed to survive and mature after injection into normal W/W· mice in vivo. By contrast, many of the mast cells present at sites of idiopathic dermatitis in W/W· mouse were mature according to light and electron microscopic criteria and as judged by staining of the cytoplasmic granules with berberine sulfate. Thus, the local alterations produced in association with chronic idiopathic dermatitis resulted in both the marked elevation of the number of dermal mast cells and the expression, by these cells, of a mature phenotype. These effects might reflect the continuous local production of soluble mast cell growth/maturation factors and/or other significant alterations at the site of dermatitis. But whatever the reason(s) for mast cell development at sites of idiopathic dermatitis, elucidation of the mechanisms responsible for this effect is likely to provide additional insight into the nature of the mast cell defect expressed by W/W· mice.

The second important implication of our findings concerns the use of genetically mast cell-deficient mice to study mast cell function in vivo. W/W· mice are widely used to analyze the roles of mast cells in diverse biologic responses. Our findings show that it is critical to search for the “spontaneous” appearance of mast cells at sites of inflammatory or pathological processes under investigation in W/W· mice, particularly in those studies involving models of chronic disease processes. It is of interest that the changes associated with the idiopathic dermatitis that occurred in SI/Sld mice apparently were unable to alter significantly the microenviron-mental defect thought to be responsible for the failure of mast cell differentiation/maturation in this mutant. This result indicates that for certain studies of mast cell biology WCB6F1 (-SI/Sld, +/-) mice may represent a more appropriate choice than the WBB6F1 (-W/W·, -/+ / +) animals.

ACKNOWLEDGMENT

We thank Susan Kissell for expert technical assistance with the electron microscopy and an anonymous reviewer for calling our attention to the presence of melanocytes in the ears of some W mutant mice.

REFERENCES

Development of large numbers of mast cells at sites of idiopathic chronic dermatitis in genetically mast cell-deficient WBB6F1-W/Wv mice

SJ Galli, N Arizono, T Murakami, AM Dvorak and JG Fox

Updated information and services can be found at:
http://www.bloodjournal.org/content/69/6/1661.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml