Chromosome Aberrations and Clinical Features of Adult T Cell Leukemia-Lymphoma Not Associated With Human T Cell Leukemia Virus Type I

By Masanori Shimoyama, Tatsuo Abe, Kanji Miyamoto, Keisuke Minato, Kensei Tobinai, Haruhisa Nagoshi, Motoyoshi Matsunaga, Takeo Nomura, Teruhiko Tsubota, Taisuke Ohnoshi, Ikuro Kimura, and Keiichi Suemasu

Chromosome aberrations and clinical features of three patients with adult T cell leukemia-lymphoma (ATL) not associated with human T cell leukemia virus type I (HTLV-I) are described. From their clinical features, two patients were diagnosed as acute type and one patient was diagnosed as chronic type, which later converted to acute crisis. Clonal and many chromosomal abnormalities were observed before therapy in the two acute type cases and at relapse in the chronic type case. Karyotype aberrations, including trisomy 3, trisomy 7, trisomy 21, del(6)(q21), del(10)(p13), 14q11 translocation, and loss of X chromosome, all of which are frequently found in HTLV-I-associated ATL, were also seen in these cases of HTLV-I-negative ATL.

RESULTS

Clinical features. The clinical features of the three patients with HTLV-I-negative ATL are summarized in Table 1. The age at onset of the disease ranged from 43 to 71 years. There were two men and one woman. Two patients (cases 1 and 2) became acutely ill, and their symptoms at onset were subfever, lymph node swelling, skin rash, and hepatosplenomegaly. Leukemic manifestation and high serum LDH levels were also observed. Pulmonary infiltration of leukemia cells developed later. The patients died of the disease 3 and 11 months, respectively, after the diagnosis (Table 1). In another patient (case 3), leukocytosis due to abnormal inducer/helper T lymphocytes of flower cell morphology was accidentally found when the patient complained to his physician of dizziness due to iron-deficiency anemia. His T lymphocytosis remained unchanged for ~2 years without specific therapy and then converted to acute phase. Skin lesions, lymph node swelling, hepatosplenomegaly, pulmonary infiltration, pleural effusion, and pericardial effusion developed. Hypercalcemia developed later, and the patient died of cardiac insufficiency 34 months after the diagnosis and 3 months after the acute transformation (Table 1).

Hypercalcemia was observed in two patients. Immunoglobulin levels were found to be within the normal range at onset of the disease in all three patients. Combination chemotherapies, including vincristine, cyclophosphamide, prednisolone, and doxorubicin (VEPA11 or CHOP12 therapy), were effective. Two patients were induced into remission, but the effect was transient. From the clinical features,

From www.bloodjournal.org by guest on November 15, 2017. For personal use only.
CHROMOSOME ABERRATIONS OF HTLV-I-NEGATIVE ATL

Table 1. Clinical Features

<table>
<thead>
<tr>
<th>Factor</th>
<th>Case No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at onset, sex</td>
<td></td>
<td>71, M</td>
<td>43, F</td>
<td>47, M</td>
</tr>
<tr>
<td>Complaints at presentation</td>
<td></td>
<td>LN swelling, anorexia, subfever, hoarseness, cough</td>
<td>LN swelling, erythroderma, subfever</td>
<td>Dizziness, back pain</td>
</tr>
<tr>
<td>Organ involved</td>
<td></td>
<td>Skin</td>
<td>Lung</td>
<td>Liver</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Lung</td>
<td></td>
<td>- → +</td>
<td>- → +</td>
<td>- → +</td>
</tr>
<tr>
<td>Lymph nodes</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Spleen</td>
<td></td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td></td>
<td>- → +</td>
<td>-</td>
<td>- → +</td>
</tr>
<tr>
<td>Laboratory examination</td>
<td></td>
<td>WBC (per μL) 56,800</td>
<td>74,600</td>
<td>17,300</td>
</tr>
<tr>
<td>Abnormal L</td>
<td></td>
<td>64%</td>
<td>87%</td>
<td>72%</td>
</tr>
<tr>
<td>Abnormal L in BM</td>
<td></td>
<td>54%</td>
<td>36%</td>
<td>11%</td>
</tr>
<tr>
<td>LDH (IU/dL)</td>
<td></td>
<td>2,610</td>
<td>1,163</td>
<td>370 → 1,717</td>
</tr>
<tr>
<td>Hypercalcemia</td>
<td></td>
<td>- → +</td>
<td>-</td>
<td>- → +</td>
</tr>
<tr>
<td>Immunoglobulin</td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Treatment and response</td>
<td></td>
<td>VEP A</td>
<td>CHOP, MTX</td>
<td>CHOP, MTX</td>
</tr>
<tr>
<td>Survival after diagnosis (mo)</td>
<td></td>
<td>3</td>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
<td>ATL, acute type</td>
<td>ATL, acute type</td>
<td>ATL, chronic type</td>
</tr>
</tbody>
</table>

LN, lymph node; WBC, white blood cell; L, lymphocyte; BM, bone marrow; LDH, lactic acid dehydrogenase; N, normal; NR, no remission; PR, partial remission; CR, complete remission; ATL, adult T cell leukemia-lymphoma.

*Pericardial effusion developed later.

cases 1 and 2 were diagnosed as acute type and case 3 was diagnosed as chronic type, according to the classification of subtypes of ATL*7 (Table 1).

Cytogenetic findings. Karyotype analysis was made before therapy in all three patients and again at relapse in two (cases 2 and 3). The results are summarized in Table 2.

In one patient (case 1), chromosome constitution was extremely complicated: Among abnormalities, +der(2)(2;?)(p16q31;?), -6, 6p-, and breaks at the proximal portion of chromosome 14 [14q11 and 14q11→+der(14)(14;?)(p11;?)] and +der(1)(1;14)(p11;q11) were noted (Fig 1). In case 2, partial trisomy 3 and

![Table 2. Cytogenetic Findings](https://www.bloodjournal.org/content/bloodjournal/98/11/985.full.html)

PB, peripheral blood; PE, pericardial effusion.

*Cyto genetic study was performed at relapse.
t(5;12)(q22;q14) were found in addition to three marker chromosomes (Fig 2A). Chromosome constitution obtained at relapse showed almost the same as that obtained before therapy. But, a translocation involving an X chromosome—t(X;6)(q12;p22)—was newly found, suggesting clonal evolution (Fig 2B). On the other hand, in case 3, the karyotype remained apparently normal, and no gross abnormality was found before therapy. At relapse, however, cells in the pericardial effusion also showed very complicated karyotypes (Fig 3A and B). Two abnormal clones were determined, one of which had a missing Y and partial trisomy 7 (Fig 3B). Many rearranged chromosomes, including del(3)(p12), del(6)(q21q23), del(10)(p13), +der(11)t(11;?) (p15;?), +der(21)t(17;21)(q11;p13) were common to each other, however, suggesting that both cell lines originated from the same progenitor cell. Thus, all three patients had complicated chromosome constitutions, although their modal numbers were near-diploid range. Abnormalities common to three patients were not detected. Abnormalities similar to those found in HTLV-1–associated ATL were also found in these three cases of HTLV-1–negative ATL, however.

DISCUSSION

We present the chromosome aberrations and clinical features of three patients with ATL not associated with HTLV-1. These findings and the hematologic, pathologic, and immunophenotypic features of these cases as reported elsewhere are identical to those of HTLV-1–associated ATL. The patients in this report are the same as the patients in the previous report, in which we proved that the patients showed neither integration of the HTLV-1 proviral genome into chromosomal DNA of leukemia cells nor anti–HTLV-1 antibody in serum. In addition, no anti–HTLV-1 antibody was detectable in any family members. These facts indicate that HTLV-1 was not associated with leukemogenesis in any of these cases of ATL, but we could not exclude the possible presence of a small amount of anti–HTLV-1 antibody and of a very small fragment of the HTLV-1 provirus that could not be detected with current techniques. Diversity in the clinical course of HTLV-1–associated ATL has been reported. Like HTLV-1–associated ATL, there was also diversity in the clinical course of HTLV-1–negative ATL, ie, acute type and chronic type were observed in HTLV-1–negative ATL in this series.

Clonal and many chromosomal abnormalities are documented for HTLV-1–associated ATL by karyotype analysis. Rowley and colleagues reported that trisomy for chromosomes 3 and 7 or 7q, and monosomy for X chromosome, 14q+, and 6q—were noted as the most common abnormalities in ATL, but 14q+ abnormality was not identified in any of the Caribbean ATL patients. Recently, karyotype analysis by the ATL Karyotype Review Committee—1985 of 78 ATL patients from 13 institutions in Japan revealed that +3, +7, -X rearrangements involving 6q15, 6q21, 10p11-13, 14q11, and 14q32 were the most common abnormalities in ATL. In the early phases of ATL, however, such as in smoldering ATL, or in chronic ATL, minimal chromosomal abnormalities have been reported.
As presented here, in acute HTLV-1-negative ATL, clonal and many chromosomal abnormalities were observed. In chronic HTLV-1-negative ATL (case 3), no chromosomal abnormalities were found at chronic phase, but clonal and many abnormalities, including del(6)(q21q23), +der(7)(7;?)(q22;?), and del(10)(p13), were found at relapse. In case 1, abnormalities involving the proximal portion of chromosome 14, +der(1)(1;14)(q13;q11) were found. Recently, abnormalities involving 14q11-q13 have been increasingly reported in various T cell malignancies, including ATL.\(^{15,19,21,23,26,27}\) In case 2, trisomy for chromosome 3, +der(3)(3;?)(q12;?), and monosomy for X chromosome were observed. From these cytogenetic findings, it is speculated that HTLV-1-negative ATL cells also have chromo-
Somal abnormalities similar to those reported in HTLV-I-positive ATL or other T cell malignancies.

The number of HTLV-I-negative ATL cases reported is very small, indicating a need for close scrutiny of this disease. Results indicate no detectable differences between the clinicohematologic, cytopathologic, immunologic, and karyotype features of HTLV-I-positive and HTLV-I-negative ATLs. The findings of HTLV-I-negative ATL suggest that there is a similar underlying mechanism(s) in leukemogenesis as well as in the malignant process of both HTLV-I-related and HTLV-I-unrelated ATL. The presence of HTLV-I-negative ATL suggests the existence of unknown cellular oncogenes closely related to the transformation of inducer/helper T cell. We consider the role of HTLV-I in the etiology of ATL to be similar to that of Epstein-Barr virus in Burkitt’s lymphoma. The causative agent of ATL may not always be...
HTLV-1: hence, the disease entity of ATL may not always be defined as an HTLV-1-induced T cell malignancy.

ACKNOWLEDGMENT

We are grateful to all expert members [Drs Nanao Kamada (Hiroshima University), Shuichi Abe (Hokkaido University), Masa-haru Sakurai and Yasuhiro Kaneko (Saitama Cancer Center), Shiro Fukuhara (Kyoto University), Tatsuo Abe (Kyoto Prefectural University of Medicine), Kanji Miyamoto (Okayama Red Cross Service Center), Yukimasa Shiraiishi (Kochi Medical School), Naoki Sadamori (Nagasaki University), and Isao Sanada (Kumamoto University)] of the ATL Karyotype Review Committee 1985 [Chairman: Dr Masanori Shimoyama, (National Cancer Center Hospital)] for karyotype analyses of cases 1 and 2.

REFERENCES

Chromosome aberrations and clinical features of adult T cell leukemia-lymphoma not associated with human T cell leukemia virus type I

M Shimoyama, T Abe, K Miyamoto, K Minato, K Tobinai, H Nagoshi, M Matsunaga, T Nomura, T Tsubota and T Ohnoshi