CONCISE REPORT

Expression of the Macrophage-Specific Colony-Stimulating Factor in Human Monocytes Treated With Granulocyte-Macrophage Colony-Stimulating Factor

By Junko Horiguchi, M. Kim Warren, and Donald Kufe

The macrophage-specific colony-stimulating factor (CSF-1, M-CSF) regulates the survival, growth and differentiation of monocytes. We have recently demonstrated that phorbol ester induces expression of CSF-1 in human monocytes. These findings suggested that activated monocytes are capable of producing their own lineage-specific CSF. The present studies demonstrate that the granulocyte-macrophage colony-stimulating factor (GM-CSF) also induces CSF-1 transcripts in monocytes. Furthermore, we demonstrate that the detection of CSF-1 RNA in GM-CSF-treated monocytes is associated with synthesis of the CSF-1 gene product. The results thus suggest that GM-CSF may indirectly control specific monocyte functions through the regulation of CSF-1 production. These findings indicate another level of interaction between T cells and monocytes.

RESULTS

We have previously shown that TPA treatment of human peripheral blood monocytes induces CSF-1 expression. A maximum increase in CSF-1 RNA was achieved six hours after TPA induction and these transcripts declined thereafter. Treatment of resting human monocytes with GM-CSF similarly induced CSF-1 expression. The CSF-1 cDNA probe hybridized with a 4.6-kb transcript detectable at three hours of exposure to 500 CFU-C/mL GM-CSF (Fig 1). Similar findings have been obtained using poly A-selected monocyte RNA (data not shown). Furthermore, the level of CSF-1 RNA induced by GM-CSF remained detectable through 48 hours. In contrast, CSF-1 transcripts were undetectable following the same analysis of monocytes incubated in the absence of GM-CSF. The findings in GM-CSF-treated monocytes were also associated with a partial down-regulation of c-fms expression (Fig 1). Similar effects on CSF-1 and c-fms expression were obtained following treatment of monocytes with 20, 100, and 2,500 CFU-C/mL GM-CSF (data not shown).

We have also monitored production of the CSF-1 protein in GM-CSF-treated monocytes. CSF-1 levels in monocyte supernatants increased nearly tenfold at three hours of GM-CSF exposure (Fig 2). Furthermore, the CSF-1 levels remained elevated at 48 hours of treatment. In contrast, monocytes incubated in the absence of GM-CSF had no detectable supernatant CSF-1 at similar intervals and at 72 hours. Thus, CSF-1 expression at the RNA level corre-

From the Laboratory of Clinical Pharmacology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston; and the Department of Cell Biology, Cetus Corporation, Emeryville, CA.

Submitted October 9, 1986; accepted December 29, 1986.

Supported by PHS Grants CA34183 and CA42802 awarded by the National Cancer Institute, DHHS, and by an American Cancer Society Faculty Research Award (D.W.K.).

Address reprint requests to Donald W. Kufe, M.D., Laboratory of Clinical Pharmacology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

© 1987 by Grune & Stratton, Inc.

0006-4971/87/6904-0049$3.00/0

have demonstrated that CSF-1 also stimulates human monocytic production of interferon, tumor necrosis factor, and myeloid colony-stimulating activity.2 Taken together, these findings would suggest that GM-CSF, and therefore T lymphocytes, may indirectly control specific functions of monocytes through the regulation of CSF-1 expression.

Other cytokines appear capable of inducing CSF-1 in monocytes. Previous studies have demonstrated that T cell–derived gamma-interferon induces release of monocyte colony-stimulating activity from purified human monocytes.9,10 Thus, gamma-interferon and GM-CSF may both contribute to the interaction between T cells and monocytes.

DISCUSSION

The present results demonstrate that GM-CSF induces CSF-1 expression in human monocytes. This induction occurred during the continued expression of c-fms transcripts. Since c-fms encodes for the CSF-1 receptor, the findings would suggest that GM-CSF treated monocytes may regulate their own growth and differentiation through CSF-1 production. Thus, the in vitro effects of GM-CSF on macrophage colony formation1 may be mediated in part by induction of CSF-1 expression. Furthermore, recent studies have demonstrated that CSF-1 also stimulates human monocyte production of interferon, tumor necrosis factor, and myeloid colony-stimulating activity.11 Taken together, these findings would suggest that GM-CSF, and therefore T lymphocytes, may indirectly control specific functions of monocytes through the regulation of CSF-1 expression.

ACKNOWLEDGMENT

The authors thank Dr Steven Gillis, Immunex Corporation, for providing the purified recombinant GM-CSF.

REFERENCES

Expression of the macrophage-specific colony-stimulating factor in human monocytes treated with granulocyte-macrophage colony-stimulating factor

J Horiguchi, MK Warren and D Kufe