CORRESPONDENCE

COBALAMIN–FOLATE INTERRELATIONS

To the Editor:

I would like to comment on two points made by Dr Chanarin and his colleagues in their critical and comprehensive review of cobalam–folate interrelations.1

First, they state that "megaloblastic erythropoiesis is unique to humans." They have overlooked completely the classic writings of Marston, who in 1952 described a profound macrocytic anaemia in which the oxygen-carrying capacity fell to 30% or lower in sheep suffering from cobalt deficiency.2 Two further features were subsequently added to the picture: (1) the presence of abnormal primitive erythroblasts in the peripheral blood and (2) a spectacular response to folic acid. These were observed both in sheep reared on cobalt-deficient pastures and in experimental sheep rendered vitamin B12 deficient under carefully controlled laboratory conditions. In these animals "the blood picture proclaims a disorder of bone marrow very similar to that which is evident in pernicious anaemia and like the latter responds dramatically to folic acid."3 In a further publication Marston described the anaemia as megaloblastic and noted that it resembles equally dramatically to vitamin B12 as well as to folic acid.4 True, the sheep is not the ideal experimental animal in which to study megaloblastic anaemia because in it the effects of adenos cobalamin deficiency are usually much more profound than those of methylcobalamin deficiency. It succumbs to the former usually before any serious degree of anaemia develops.

Second, the authors state that "there is an unconfirmed report of increased urinary excretion of methylmalonic acid in patients anesthetized with N2O."5 Other important substances are metabolized along the propionyl-succinyl pathway. Notable among these are valine and isoleucine. Dietary loading with both these amino acids will increase the methylmalonic aciduria in untreated pernicious anaemia, indicating that their metabolism is impaired at the methylmalonyl-CoA mutase block.6 This is true also in patients under nitrous oxide anesthesia. Serum valine levels were significantly elevated in patients anesthetized with nitrous oxide for periods of three hours or longer. This was attributed to the inactivation of adenosylcobalamin by nitrous oxide, thereby inducing the methylmalonyl-CoA mutase block with resulting accumulation of valine in the blood.6 The urinary excretion of methylmalonic acid was not increased in these patients (unpublished observation).

Isoleucine, which is only partly metabolized along the propionyl–succinyl pathway, as well as valine, and partly along a vitamin B12 independent ketogenic pathway, can also be elevated in patients undergoing nitrous oxide anaesthesia, but the serum levels of both these amino acids showed a pronounced fall in patients anesthetised without nitrous oxide.7 Three metabolites, valine, isoleucine, and methylmalonic acid, therefore accumulate proximal to the methylmalonyl–CoA mutase block in humans exposed to nitrous oxide.

This is convincing evidence that, unlike in the rat, the enzyme methylmalonyl–CoA mutase is inactivated by nitrous oxide in man. The serum valine levels measured by the highly sensitive microbiological method employed8 (mean recovery 99.4%, coefficient of variation ± 3.2% in 12 experiments after adding 4.0 mg % of L-valine to normal serum) would appear to be a more sensitive indicator of the mutase activity than the urinary methylmalonic acid under these very short periods of exposure to nitrous oxide.

T.E. PARRY
South Glamorgan Area
Health Authority (Teaching)
South Glamorgan, UK

REFERENCES
2. Marston HR: Cobalt, copper and molybdenum in the nutrition of animals and plants. Physiol Rev 32:67, 1952

To the Editor:

In response to Dr T.E. Parry, the anaemia in sheep reared on cobalt-deficient feed and hence developing cobalamin deficiency when examined by hematologists was reported to be normocytic and normochromic,1 and the marrow was hypoplastic.2 The assumption 30 years ago that the anaemia in sheep was megaloblastic was not based on any supporting evidence.

We are not aware of any convincing evidence for the inactivation of methylmalonyl–CoA mutase by short-term exposure to nitrous oxide in man.

I. CHANARIN
ROSEMARY DEACON
M. LUMB
M. MUIR
JANET PERRY
MRC Clinical Research Center
Northwick Park Hospital
Harrow, Middlesex, UK
Cobalamin-folate interrelations [letter]

TE Parry

Updated information and services can be found at:
http://www.bloodjournal.org/content/69/3/974.citation.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml