ANNOUNCEMENTS

HOUSTON SOCIETY OF CLINICAL PATHOLOGISTS

Houston, TX
April 25, 1987

Slide seminar on lymphomas and leukemias presented by Robert Collins, MD, and John Bennett, MD.
For further information, contact: James J. Butler, MD, Department of Pathology, Box 85, M.D. Anderson Hospital, Houston, TX 77030.

AMERICAN SOCIETY OF HEMATOLOGY

Spring Symposium on Hematopoietic Growth Factors

Durham, North Carolina
April 20–21, 1987

The American Society of Hematology is holding a two-day symposium on hematopoietic growth factors sponsored by Burroughs Wellcome Company, to be held at the Searle Center in Durham, North Carolina on April 20 and 21, 1987. The topics will include the molecular biology of the hematopoietic growth factors, their biological actions, and the results of in vivo studies with these molecules in experimental animals and humans. Among the participants will be Steven Clark, Malcolm Moore, David Golde, Judith Gasson, Ken Kaushansky, Gordon Wong, Peter Quesenberry, John Adamson, and Colin Sieff.
Additional information and details of the program are available through Dr Wendell F. Rosse, PO Box 3934, Duke University Medical Center, Durham, NC 27710. Individuals interested in submitting abstracts or poster presentations, or preregistering are encouraged to do so by March 1, 1987. Maximum registration: 200.

GEORGETOWN UNIVERSITY MEDICAL CENTER, WASHINGTON, DC
“BONE MARROW TRANSPLANTATION: PROGRESS AND PROBLEMS”

Washington, DC
March 28, 1987

For further information contact: Office of Continuing Medical Education, Georgetown University Medical Center, 3800 Reservoir Rd, NW, Washington, DC 20007. Telephone (202) 625-2306.

SHORT COURSE IN MEDICAL & EXPERIMENTAL MAMMALIAN GENETICS

July 20–31, 1986
Bar Harbor, Maine

Conducted by The Jackson Laboratory and Johns Hopkins University School of Medicine. Lectures covering the entire field are supplemented by methodologic workshops in cytogenetics, biochemical screening, linkage analysis, and molecular genetics, as well as demonstrations of mouse mutants and problems in clinical genetics. Held at The Jackson Laboratory. Inquiries and applications should be made to: Victor A. McKusick, MD, 292 Carnegie Bldg, Johns Hopkins Hospital, 600 N Wolfe St, Baltimore, MD 21205; or to Thomas H. Roderick, PhD, c/o Training & Education Office, The Jackson Laboratory, Bar Harbor, ME 04609.
LEUKEMIA SOCIETY OF AMERICA
THIRD ANNUAL NATIONAL SYMPOSIUM

Town and Country Hotel, San Diego, CA
March 18–21, 1987

Designed to focus on the latest advances and techniques in research and treatment of leukemias and lymphomas, the program will address current information and rapidly developing new approaches and programs in studies of the disease. Emphasis will be upon the application of basic science and its relation to clinical practice. The meeting is geared to physicians, nurses, allied professionals, fellows-in-training, residents, and students with major interest and involvement in leukemia and related disorders. The course is accredited for CME by the AACME. It meets the criteria for 17 credits in Category I towards the Physician’s Recognition of the AMA. Registered nurses will qualify for 20.7 contact hours of continuing education through the LSA’s provider accreditation for continuing education for registered nurses.

There will be a keynote address on “Chromosomes, Genes, and Leukemia” by Peter C. Nowell, MD; Stohlman Memorial Scholar papers: posters; and five minisymposia, dealing with: biological characteristics of clinical trial designs; molecular genetics; application of molecular probes; antmyeloid monoclonal antibodies; and cellular response to growth factors. There will also be daily group breakfasts and an awards banquet. Registration fee: physicians: $100; nurses, fellows-in-training, residents, and students: $60. Fees are due by March 11, 1987.

For registration and additional information, contact: LSA Medical Conference, c/o Bostrom Corporation, 435 N Michigan Ave, Suite 1717, Chicago, IL 60611. Telephone: (312) 644-0828.
<table>
<thead>
<tr>
<th>Journal Title</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMERICAN JOURNAL OF CARDIAC IMAGING</td>
<td>Quarterly</td>
</tr>
<tr>
<td>AMERICAN JOURNAL OF KIDNEY DISEASES</td>
<td>Monthly</td>
</tr>
<tr>
<td>ARCHIVES OF PSYCHIATRIC NURSING</td>
<td>Bimonthly</td>
</tr>
<tr>
<td>BLOOD</td>
<td>Monthly</td>
</tr>
<tr>
<td>COMPREHENSIVE PSYCHIATRY</td>
<td>Bimonthly</td>
</tr>
<tr>
<td>INFORMATICS IN PATHOLOGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td>JOURNAL OF CARDIOTHORACIC ANESTHESIA</td>
<td>Bimonthly</td>
</tr>
<tr>
<td>JOURNAL OF CLINICAL ONCOLOGY</td>
<td>Monthly</td>
</tr>
<tr>
<td>JOURNAL OF CRITICAL CARE</td>
<td>Quarterly</td>
</tr>
<tr>
<td>JOURNAL OF PEDIATRIC NURSING</td>
<td>Bimonthly</td>
</tr>
<tr>
<td>JOURNAL OF PEDIATRIC SURGERY</td>
<td>Monthly</td>
</tr>
<tr>
<td>JOURNAL OF POST ANESTHESIA NURSING</td>
<td>Quarterly</td>
</tr>
<tr>
<td>METABOLISM—CLINICAL AND EXPERIMENTAL</td>
<td>Monthly</td>
</tr>
<tr>
<td>PROGRESS IN CARDIOVASCULAR DISEASES</td>
<td>Bimonthly</td>
</tr>
<tr>
<td>SEMINARS IN ANESTHESIA</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN ARTHRITIS AND RHEUMATISM</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN DERMATOLOGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN DIAGNOSTIC PATHOLOGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN HEMATOLOGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN NEPHROLOGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN NUCLEAR MEDICINE</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN ONCOLOGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN ONCOLOGY NURSING</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN OPHTHALMOLOGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN ORTHOPAEDICS</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN PERINATOLOGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN RESPIRATORY INFECTIONS</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN ROENTGENOLOGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN ULTRASOUND, CT, AND MR</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN UROLOGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td>SEMINARS IN VETERINARY MEDICINE AND SURGERY (SMALL ANIMAL)</td>
<td>Quarterly</td>
</tr>
<tr>
<td>TRANSFUSION MEDICINE REVIEWS</td>
<td>Quarterly</td>
</tr>
<tr>
<td>(3 issues 1987)</td>
<td></td>
</tr>
<tr>
<td>TRANSPLANTATION PROCEEDINGS</td>
<td>Bimonthly</td>
</tr>
</tbody>
</table>
ACCUSTAINS™ FOR HEMATOLOGY

ACCUSTAIN is a term now applied to a new group of Sigma Diagnostics liquid stains that exhibit superior features. ACCUSTAINS for hematology include special formulations of Wright Stain and Giemsa Stain for manual and automated applications. For the first time, guesswork has been removed from use of Wright Stain and Giemsa Stain. These materials are prepared as precisely defined mixtures of xanthene and thiazine dyes. Their precision manufacture virtually eliminates lot-to-lot variation. The ACCUSTAINS for hematology exhibit consistent Romanowsky behavior requiring no adjustment of staining times each time a new batch of material is used. This sets ACCUSTAINS apart from materials offered by other manufacturers.

- Fastest manual reagents with superior staining characteristics.
- Reproducible results.
- No lot-to-lot reagent variation.
- Comparable manual and automated staining.
- No reagent precipitation problems.
- Unusually stable reagents.
- Defined reagent composition.
- Stable stain solutions for automation.
- Stain components manufactured by Sigma Diagnostics assuring maximum quality control.

ACCUSTAIN is a Registered Trademark of Sigma Diagnostics.

NEW MONOCLONAL ANTIBODIES

The new group of monoclonal antibodies is the first of a growing line of products designed to identify hematopoietic differentiation antigens. These highly purified markers are carefully examined for specificity using established neoplastic tissue culture lines.

HEMATOLOGY

<table>
<thead>
<tr>
<th>PROCEDURE NUMBER</th>
<th>Fetal Hemoglobin</th>
<th>GS-10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Giemsa Stain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Hema-Tek®)</td>
<td>GSHT</td>
</tr>
<tr>
<td></td>
<td>Iron Stain</td>
<td>HT-20</td>
</tr>
<tr>
<td></td>
<td>Nitroblue Tetrazolium</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NBT) Reduction</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td>May-Grunwald</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>Monoclonal Antibodies</td>
<td>MC-1</td>
</tr>
<tr>
<td></td>
<td>Wright Stain (Manual)</td>
<td>WS</td>
</tr>
<tr>
<td></td>
<td>(Hema-Tek®)</td>
<td>WSHT</td>
</tr>
<tr>
<td></td>
<td>Wright Stain</td>
<td></td>
</tr>
</tbody>
</table>

MAKING THE VISION A REALITY.

SIGMA DIAGNOSTICS
The Standard The Source
P.O. BOX 14508
ST. LOUIS, MO 63178 USA
For orders in the USA/Canada call 1-800-325-3010
and outside the USA/Canada call 314-771-5750 collect.
New Technical Service HOTLINE number
1-800-325-0250
or call 314-771-3122 collect.
For Alexander, who can't produce enough antibodies to fight infection...

Young or old, patients without sufficient levels of antibodies face overwhelming infection... and they urgently need help. Aggressive IGIV treatment with GAMIMUNE® N gives these patients the edge that may make the difference: antibodies against major bacterial, viral and fungal pathogens, in just minutes.

For patients like Alexander, GAMIMUNE® N provides premium IGIV: immune globulin that contains at least 98% pure gamma globulin¹; unmodified “native” IgG with immunologic activity of normal plasma; and documented in vitro inactivation of HTLV-III virus* during fractionation from plasma to final gamma globulin.²

When patients don’t have enough antibodies to fight infection, like Alexander, it’s nice to know that GAMIMUNE® N does.

Aggressive IGIV treatment in immunodeficiency syndromes. Also for both chronic and acute ITP in children and adults.

No more expensive than other IGIV therapy, GAMIMUNE® N may, in some cases, be less expensive. A contributing factor is that GAMIMUNE® N is a convenient, ready-to-use, liquid formulation that saves valuable pharmacy time.

No premium cost
for TODAY’S
IGIV.

GAMIMUNE® N
Immune Globulin Intravenous (Human) 5%
(in 10% Maltose), pH 4.25

* The Cohn-Oncley process used to produce Gamimune’N has been challenged in vitro with a virus spike of 1 x 10⁴ TCID₅₀ (Tissue Culture Infectious Doses) of HTLV-III and found to remove and/or inactivate the viral challenge. In addition, Gamimune’N undergoes an incubation step as a final container which has been shown to effect an additional 1 x 10⁴ to 1 x 10⁵ TCID₅₀ (Tissue Culture Infectious Doses) reduction of HTLV-III.

Please see following page for brief summary of prescribing information.
CLINICAL PHARMACOLOGY
Gamimmune *N* supplies a broad spectrum of opsonic and neutralizing IgG antibodies for the prevention or attenuation of a wide variety of infectious diseases. As Gamimmune *N* is administered essentially 100% intramuscularly, it is primarily available in the recipient's circulation. A relatively rapid fall in serum IgG level in the first week post-infusion is to be expected. This decrease averages 50% of the peak level achieved immediately post-infusion and is mainly due to the equilibration of IgG between the plasma and the extravascular space. The t 1/2 of half-life of Gamimmune *N* equals or exceeds the three week half-life reported for IgG in the literature; but individual patient variation in half-life has been observed. Thus, this variable as well as the amount of immune globulin administered per dose is important in determining the frequency of administration of the drug for each individual patient.

The intravenous administration of solutions of maltose has been studied by several investigators. Healthy subjects tolerated the infusions well, and no adverse effects were observed at a rate of 0.25 g/m² maltose/kg body weight per hour. In safety studies conducted by Cutter Biological, infusions of 10% maltose administered at 0.27±0.2 g maltose/kg per hour to normal subjects produced either mild side effects (e.g. headache) or no adverse reaction. Following intravenous administrations of maltose, maltose was detected in the urine, there was a direct excretion of maltose and glucose in the urine and a mild diuretic effect. These alterations were well tolerated without significant adverse effects. The highest recommended infusion rate is 0.08 mL/kg body weight per minute (see DOSAGE AND ADMINISTRATION). Equivalently, the 0.48 g maltose/kg body weight per hour infusion rate is 0.08 mL/kg body weight per minute.

The buffer capacity of Immune Globulin Intravenous (Human) 5% (in 10% Maltose), pH 4.25—5.0, is 15.5 mEq/L (i.e. 0.3 mEq/mg of Immune Globulin Intravenous (Human) 5%) (in 10% Maltose). The buffer capacity of Immune Globulin Intravenous (Human) 5% (in 10% Maltose) per mg of Immune Globulin Intravenous (Human) 5% (in 10% Maltose) body weight therefore represents an acid load of 0.0495 ± 0.12 mL/kg body weight.

The total buffering capacity of whole blood in a normal individual is 45.50 mEq/L, of blood, 3.6 mL/kg body weight. Thus, the acid load delivered in the largest dose of Immune Globulin Intravenous (Human) *N* would be neutralized by the buffering capacity of whole blood alone.

In Phase I human studies, no change in intravascular pH measurements was detected following the intravenous administration of Gamimmune *N*. At a dose of 150 mg/kg body weight, the concentration of 400 mg/kg body weight of IgGtoc or 3.13 mg/mL, there were no clinically important differences in mean venous pH or bicarbonate measurements in patients who received Gamimmune *N*. Compared with those who received a chemically modified intravenous albumin, there was no difference in their acute phase responses.

In patients with limited or compromised acid-base compensatory mechanisms, consideration should be given to the effect of the additional acid load Gamimmune *N* might produce.

INDICATIONS AND USAGE
Immunodeficiency Syndromes: Gamimmune *N* is indicated for the maintenance treatment of patients who are unable to produce sufficient amounts of IgG antibodies. Usage of Gamimmune *N* may be preferred to that of intramuscular immunoglobulin preparations, especially in patients who require an immediate increase in intramuscular IgG levels, in patients with a small muscle mass, and in patients with bleeding tendencies in whom intramuscular injections are contraindicated. It may be used in disease states such as congenital agammaglobulinemia (e.g. X-linked agammaglobulinemia), common variable hypogammaglobulinemia, isolated hypogammaglobulinemia, and as an intravenous immunoglobulin in severe combined immunodeficiency.

Idiopathic Thrombocytopenic Purpura (ITP): In children and adults, Gamimmune *N* may be used in the treatment of chronic ITP. In adults, Gamimmune *N* may initiate a remission in patients who have failed to respond to previous therapy. In clinical studies of Gamimmune *N* five of six (83.3%) children and 10 of 16 (62.5%) adults with ITP demonstrated a clinically significant increment in the platelet count during or following an initial treatment course with Gamimmune *N* at a dose of 400 mg/kg body weight daily for five days. The duration of the platelet rise following treatment of ITP with Gamimmune *N* was variable, ranging from several days up to 12 months or more. Several ITP patients demonstrated continuing responsiveness over many months to intermittent Gamimmune *N* 400 mg/kg body weight single dose maintenance courses. Two of three children with acute ITP treated with Gamimmune *N* rapidly went into complete remission. However, childhood ITP may respond spontaneously without treatment. Four patients with refractory ITP were able to undergo major surgical procedures as a result of a rapid increase in platelet count associated with Gamimmune *N* treatment.

In addition, one patient with severe thrombocytopenia due to posttransfusion purpura (PLT-all IgG antibody with platelet anti-PLT specificity) also responded to treatment with Gamimmune *N* at a dose of 400 mg/kg body weight daily for 5 days. There was a rapid rise in the platelet count commencing on the third day of treatment.

It is presently not possible to predict which patients with ITP will respond to therapy. Although the increase in platelet counts in children seems to be better than that of adults, it is currently not clear which clinical situations in which a rapid rise in platelet count is needed to control bleeding or to allow a patient with ITP to undergo surgery, administration of Immune Globulin Intravenous (Human) (10% Maltose), pH 4.25—5.0, should be considered. The responses in patients in whom a response is achieved, the rise of platelets is generally rapid (within 1-5 days), transient (most often lasting from several days to several weeks) and should not be considered curative. In some patients, a maintenance dose of Gamimmune *N* administered every several weeks may be of benefit once the platelet count decreases to clinically hazardous levels (see DOSAGE AND ADMINISTRATION).

CONTRAINDICATIONS
Gamimmune *N* is contraindicated in individuals who are known to have had an anaphylactic or similar reaction to Immune Globulin Intravenous (Human) or with selective IgA deficiencies who have known antibody against IgA (anti-IgA antibody) should not receive Gamimmune *N* since these patients may experience severe reactions to the IgA which may be present.
Offers you both fast communications and in-depth reviews in this rapidly expanding field

HEMATOLOGY REVIEWS AND COMMUNICATIONS
An International Journal

Editor: Stuart Roath, University Haematology, General Hospital,
Tremona Road, Southampton S09 4XY, UK
Co-Editor: Milton Corn, Department of Medicine, Georgetown University
Hospital, 3800 Reservoir Road N.W., Washington, DC 20007, USA

AIMS AND SCOPE
The Reviews section carries reviews on all hematological and hematological/oncological topics. These will usually be in-depth studies of a selected area, shorter reviews (often grouped by field), or even substantial longer reviews covering a complete issue. Each issue of the journal may contain review articles written at the invitation of the editor. Authors wishing to submit a review article for consideration should submit a summary to the editor or co-editor before commencing detailed work on the manuscript. The Communications section publishes research communications for rapid publication. This will facilitate the quickest possible presentation of newly acquired research data. Papers on both clinical and laboratory based data are welcomed. Only in exceptional cases would case reports qualify for inclusion.

EDITORIAL BOARD:
J Ferrata, Harvard University, Cambridge, Massachusetts
USA
M Hangya, Keio University, Tokyo, Japan
D Jackson, Georgetown University Hospital, Washington DC, USA
A Poliack, Hadassah University Hospital, Jerusalem, Israel
C Smetana, Institute of Experimental Medicine, Prague, Czechoslovakia
J Spivak, Johns Hopkins University, Baltimore, Maryland, USA
J Stewart, Middlesex Hospital, London, UK
G Tiz, Med Univ-Clinik, Graz, Austria
Y. Waterbe, Keio University, Tokyo, Japan
J. P. Wilkinson, Middlesex Old Hall, Cheshunt, UK

CALL FOR PAPERS
Research communications and in-depth reviews on all aspects of hematology are welcomed. Free color illustrations are available; there are no page charges to authors or institutions. Write to the publisher for a free sample issue containing helpful notes for contributors.

CONTENTS OF VOLUME 1, NUMBER 1
Bone Marrow Transplantation in the Management of the Patient with Acute Myeloblastic Leukaemia in Remission, A.J. Barrett
Current Chemotherapy of AML: Kill or Cure? A. Kruger and A.G. Smith
Curing ALL with Drugs, Jill Durrant
Bone Marrow Transplantation in the Treatment of Acute Lymphoblastic Leukaemia, H.G. Prentice, J-P. Grib and M K. Brenner
Treatment of Chronic Myeloid Leukaemia, N. C. Allan
Bone Marrow Transplantation for Chronic Myeloid Leukaemia, John M. Goldstein

CONTENTS OF VOLUME 1, NUMBER 2
Platelet Size Distribution Analysis: Principles, Techniques and Potential Clinical Utility, R. M. Rosan
Hemophilia, Current Concepts of Management and Unresolved Problems, J. M. Lusher
Human T Cell Leukaemia/Lymphoma Virus (HTLV) Associated with Mature T Cell Malignancies, G. I. Wainberg
Automated Leucocyte Identification, J. M. Davies, P. Martin and A. H. Goldstone
In Vitro Granulomonopoiesis in Iron Deficient Infants, J. Pedras, X. Lopez-Karpovitch, M. R. Cidkenas and M. S. Cordova

SUBSCRIPTION INFORMATION
Four issues per volume:
Current volume block: Volume 1, 1986-1987
ISSN 0882-8083
Corporate subscription price per volume: $160.00
University and academic subscription price per volume: $128.00
Individual subscription price per volume: $64.00*
Society subscription price per volume for individual members of the American Society of Hematology and the International Society of Hematology: $32.00**

*Individual subscription rates are available only to individuals who subscribe directly from the publisher and who pay by personal check or credit card.

**Society subscription price is available only to individual members who subscribe directly from the publisher and who pay by personal check or credit card.
Twenty years ago, leukemia killed enough people to fill Madison Square Garden.

Twenty years ago, leukemia was a mysterious disease. Little was known about the cause. Less was known about the cure.

But since then, the Leukemia Society of America has funded 32 million dollars of medical research in an all-out effort to find a cure.

Today, more and more people with leukemia are surviving. Living normal lives. But the Leukemia Society won’t be satisfied till this killer is stopped for good.

For more information, including the free booklet "What Everyone Should Know About Leukemia," write to: Leukemia Society of America, 733 Third Ave., New York, New York 10017.

leukemia® society of america, inc.
We’re closing in on a killer.
FACULTY POSITIONS: The Hematopathology Program, Division of Laboratory Medicine, M. D. Anderson Hospital and Tumor Institute has three faculty positions open for two M.D.’s and a Ph.D. The M.D. should have training and research experience in hematologic pathology. The Ph.D. should have a record of productive research in hematopoietic neoplasia. The successful applicants will be expected to develop independent and collaborative research in hematopoietic neoplasia. Preference will be given to individuals who have a background in molecular biology. One M.D. position is at the academic rank of Faculty Associate. Academic rank is commensurate with qualifications and experience for the other two positions. Send curriculum vitae, names of three references, and a statement of research interests to: Sanford A. Stass, M.D., Division of Laboratory Medicine, Box 73, M. D. Anderson Hospital and Tumor Institute, 1515 Holcombe Blvd., Houston, Texas 77030. The University of Texas System Cancer Center is an Equal Opportunity/Affirmative Action Employer.
Asst/Assoc Professor, tenure track, Ph.D. in Hematology or related area. Department of Health Sciences seeks faculty with clinical/research interests for expanding undergrad/grad curriculum in clinical laboratory sciences. Preference will be given to applicants with extensive clinical laboratory experience and/or certification. Letter of application/curriculum vitae must be received by March 1, 1987. Submit applications to: Chairperson, Search and Screen, Medical Technology Program, Dept of Health Sciences, Univ of Wisconsin-Milwaukee, P.O. Box 413, Milw. WI. 53201, (414) 963-5324. UWM is EOAAE.

COOLEY'S ANEMIA FOUNDATION, INC.
RESEARCH FELLOWSHIPS

The Cooley’s Anemia Foundation, Inc., invites applications for fellowships to both postdoctoral fellows and junior faculty members interested in the field of Cooley’s anemia with stipends of up to $15,000. The deadline for receipt of applications is April 1, 1987. Awards will be made by June 15, 1987, and funding will begin July 1, 1987, for one year with the possibility of renewal for a second year.

For application forms and further information, write: Mr. Michael C. DiFilippo, National Executive Director, Cooley’s Anemia Foundation, Inc., 105 East 22nd Street, Suite 911, New York, New York 10010. Telephone: (212) 598-0911.
More people have survived cancer than now live in the City of Los Angeles. We are winning.

Please support the

AMERICAN CANCER SOCIETY
REACH FOR SUPERIOR RESULTS

Becton Dickinson Monoclonal Reagents

Leading research laboratories throughout the world select Becton Dickinson Leu monoclonal reagents for choice, quality, and convenience.

We offer the industry's largest selection of monoclonal antibodies to human leukocytes, human immunoglobulins, complement receptors, and mouse leukocytes as well as a full line of second-step reagents.

New products include: Simultest™ reagents for single-step, two-color immunofluorescence using unique combinations of conjugated monoclonal antibodies; and I-PATH™, a series of more than 25 products specifically formulated for tissue immunopathology.

Each Becton Dickinson reagent is characterized by extensive FACS™ analysis and tested by multiple methods to ensure superior quality.

And all Becton Dickinson reagents are supplied in solution, ready to use. Becton Dickinson Leu monoclonal reagents. Superior quality for superior results.

For a current product listing, contact your Becton Dickinson Immunocytochemistry Systems Representative, or call us at the number below.

Becton Dickinson Immunocytochemistry Systems
P.O. Box 7375
Mountain View, CA 94039
Toll Free (800) 223-6226
In CA, call (800) 621-3796

Superior Quality

For research use only. Not for use in human therapeutic or diagnostic procedures. © 1986 Becton Dickinson