The Use of the Dilute Russell Viper Venom Time for the Diagnosis of Lupus Anticoagulants

By Perumal Thiagarajan, Vittorio Pengo, and Sandor S. Shapiro

We describe here a test for lupus anticoagulants based on a modified Russell viper venom time (RVVT), using limiting amounts of phospholipid and venom. We have studied 29 patients with a prolonged dilute RVVT. Five of the 29 had a normal activated partial thromboplastin time and three of 14 tested by the tissue thromboplastin inhibition test were normal. In 17 of 19 patients tested, the dilute RVVT was completely normal when ionophore-treated platelets were substituted for phospholipid; the remaining two patients, both with very long phospholipid-dependent dilute RVVT's, were nearly completely normalized. The dilute RVVT is not prolonged in the presence of antibodies to factors VIII, IX, or XI. Thus, the dilute RVVT appears to be a simple, reproducible, sensitive, and relatively specific method for the detection of lupus anticoagulants.

© 1986 by Grune & Stratton, Inc.

Lupus anticoagulants are antibodies reactive against anionic phospholipids, thereby prolonging phospholipid-dependent coagulation tests.1-3 Though initially recognized in patients with systemic lupus erythematosus, similar inhibitors have been described in a variety of disorders and, occasionally, in apparently normal individuals.2,4-9 In recent years it has become clear that these antibodies to specific coagulation factors were determined by the Bethesda Assay.35 All test results described here were performed in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Materials and Methods

Coagulation tests. Blood was collected in one-tenth volume of 3.8% trisodium citrate. Platelet-poor plasma was obtained by centrifugation at 2,500 g for 15 minutes at room temperature. The prothrombin time, activated partial thromboplastin time and thrombin time, using tissue thromboplastin (General Diagnostics, Morris Plains, NJ), Thrombofax (Ortho Diagnostic Systems, Raritan, NJ), and Thrombin (Upjohn, Kalamazoo, Mich), respectively, were performed as described previously.24 The normal ranges for these tests in our laboratory are 12 to 15 seconds, 23 to 36 seconds, and 20 to 26 seconds, respectively. The tissue thromboplastin inhibition test (TTI) was performed according to the method of Schleider et al,9 using a 1:100 dilution of tissue thromboplastin. The titers of antibodies to specific coagulation factors were determined by the Bethesda Assay.25 All test results described here were performed in our laboratory.

The dilute Russell viper venom time (RVVT) was performed as described previously.33 Briefly, Russell viper venom (Burroughs Wellcome, Raleigh, NC) was reconstituted as suggested by the manufacturer and further diluted 1:200 in Tris-buffered saline (0.15 mol/L NaCl, 0.02 mol/L Tris, pH 7.5). The phospholipid reagent

Thrombofax was diluted 1:8 in Tris-buffered saline. Other partial thromboplastins can be substituted for Thrombofax; however, the dilution of each reagent needs to be determined in the manner described for Thrombofax (see Results). The dilute RVVT was performed by incubating 0.1 mL of plasma, 0.1 mL of diluted Russell viper venom, and 0.1 mL diluted phospholipid for 30 seconds at 37 °C, after which 0.1 mL of 0.03 mol/L calcium chloride was added and the clotting time recorded. In experiments using platelets, 0.1 mL of calcium ionophore-treated platelets was substituted for phospholipid.

Preparation of washed, ionophore-treated platelets. Citrated blood was centrifuged at 150 g for 15 minutes at room temperature. The platelet-rich plasma supernatant was centrifuged at 1,500 g for 15 minutes at room temperature. The twice-washed platelets were resuspended at a concentration of 8 x 10⁸/mL in the same buffer, but without EDTA. Glucose, pH 7.5. The twice-washed platelets were resuspended at a concentration of 8 x 10⁸/mL in the same buffer, but without EDTA. Activation was achieved by adding to 2 mL of platelet suspension (5 mmol/L solution of calcium ionophore A23187 (Calbiochem, San Diego, Calif) in absolute ethanol (giving a final concentration of 2.5 μmol/L, and incubating for five minutes at room temperature. The ionophore-treated platelets were used immediately or frozen in aliquots at −70 °C for future use.

Results

Effect of phospholipid concentration on the RVVT. Russel viper venom was diluted to give a clotting time in normal plasma of approximately 25 seconds. At this dilution, slightly better separation of lupus anticoagulant and normal plasma was achieved than at higher venom concentrations. Since lupus anticoagulants are antibodies with immunologic reactiv-
ity towards anionic phospholipids, we wished to increase the test sensitivity further by using the minimal concentration of phospholipid reagent necessary for prothrombin activation. As can be seen in Fig 1, Thrombofax was slightly inhibitory when used undiluted, and was optimal at a dilution of 1:2 to 1:4, when tested in normal plasma. However, optimal separation of lupus anticoagulant from normal plasma was achieved at a Thrombofax dilution of 1:8 or greater. At this phospholipid concentration lupus anticoagulant patients were clearly abnormal, even though some had a normal RVVT with undiluted phospholipid reagent. The coefficient of variation of this test, determined by performing 20 replicates on a single normal plasma, was 0.8%. The normal range, determined on 14 fresh normal plasmas, was 26.2 ± 1.5 sec (± 2 SD). The normal range observed in our laboratory over a 3-year period, using fresh and frozen plasmas, was 25.6 ± 2.6 sec (± 2 SD). We consider clotting times of 30 seconds or greater (>3.8 SD above the mean) to be abnormal, and make a presumptive diagnosis of a lupus anticoagulant when an abnormal test is not corrected by addition of an equal volume of normal plasma. Using this test, we have diagnosed the presence of a lupus anticoagulant in 29 patients referred to us because of the suspicion of such an anticoagulant. Of the 29 patients, only 24 had a prolonged aPTT. Of the remaining five, two patients were on steroid therapy at the time of our study but had a prolonged aPTT previously; one patient had a chlorpromazine-related lupus syndrome with an antinuclear antibody titer of 1:320 and a rapid plasma reagin (RPR) titer of 1:16; the fourth patient had a history of recurrent abortions; and the fifth patient had systemic lupus erythematosus.

Substitution of platelets for phospholipid in the dilute RVVT. The effect of substituting calcium ionophore-activated platelets for the phospholipid reagent was investigated as follows. Ionophore-treated platelets were diluted to a concentration giving an RVVT of 23 to 28 seconds. The treated platelets are stable in suspension at least during the day they are prepared, and can be quick-frozen at least once and stored for 12 months or more at −70 °C without loss of activity. As can be seen in Fig 2, in 17 of 19 cases tested in this manner the RVVT was completely normal when performed with platelets rather than phospholipid. In the other two cases the RVVT was not completely normalized. These two patients had very prolonged dilute RVVTs and, in addition, one of the two was receiving oral anticoagulants. However, in these situations the prolonged test is normalized by the addition of an equal volume of normal plasma (Fig 3). In contrast, addition of an equal volume of normal plasma does not correct the dilute RVVT of lupus anticoagulant plasma. In fact, an occasional lupus anticoagulant plasma shows a further prolongation of the RVVT test on admixture with normal plasma (Fig 3), an effect previously referred to as the “lupus cofactor” phenomenon.36,37

The dilute RVVT in coagulation factor deficiencies. The dilute RVVT is normal in plasma deficient in factors VII, VIII, IX, XI, or XII. Plasmas with factor V or factor X levels below 0.4 U/mL and plasmas from patients receiving oral anticoagulants give a prolonged dilute RVVT. However, in these situations the prolonged test is normalized by the addition of an equal volume of normal plasma (Fig 3). In contrast, addition of an equal volume of normal plasma does not correct the dilute RVVT of lupus anticoagulant plasma. In fact, an occasional lupus anticoagulant plasma shows a further prolongation of the RVVT test on admixture with normal plasma (Fig 3), an effect previously referred to as the “lupus cofactor” phenomenon.36,37

The dilute RVVT in the presence of heparin or antibodies to coagulation factors. The presence of antibodies to factors VIII, IX, or XI does not prolong the dilute RVVT (Table
Table 2. Effect of Factor V Antibody on the Dilute RVVT

<table>
<thead>
<tr>
<th>Factor V Antibody Concentration (Bethesda U/mL)</th>
<th>Dilute RVVT (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>663.0</td>
<td>68.9</td>
</tr>
<tr>
<td>66.3</td>
<td>66.9</td>
</tr>
<tr>
<td>6.63</td>
<td>61.9</td>
</tr>
<tr>
<td>0.663</td>
<td>38.5</td>
</tr>
<tr>
<td>0.066</td>
<td>32.3</td>
</tr>
<tr>
<td>0</td>
<td>25.4</td>
</tr>
</tbody>
</table>

was also normal in the TTI test. Thus, although the correlation between results of all three tests was good, the dilute RVVT appears to be the most sensitive of the three.

DISCUSSION

A number of different tests have been proposed and used for the diagnosis of lupus anticoagulants, reflecting the difficulty in reaching a consensus concerning their definition and mechanism of action.\(^5\) It is now clear that lupus anticoagulants have immunologic reactivity towards anionic phospholipids and thereby prolong phospholipid-dependent coagulation tests. Nevertheless, phospholipid-dependent tests may show variable sensitivity and/or specificity toward lupus anticoagulants for several reasons. First, there are no standards for phospholipid reagents used in coagulation tests, and the quantity of phosphatidylserine present in such reagents, for example, has been shown to affect their sensitivity toward lupus anticoagulants.\(^41\)\(^\) One test\(^38\) does not utilize any added phospholipid, presumably relying on phospholipid originating from the plasma or the "platelet dust."\(^43\)\(^,\)\(^44\) Second, the physical state of the phospholipid differs in different tests: the aPTT and the RVVT utilize
one test and not been clearly established, since patients may be positive in tests. As a lants do not prolong the TTI, although they do prolong other lant; for example, as we have shown, some 1gM anticoagu- studies. Antibodies to clotting factors. For instance, antibodies to The dilute RVVT which we describe here is simple and in their response to deficiencies of clotting factors and to lipids, it will be necessary to standardize both types of tests. vary 1.3,45,46 in the presence of platelets and as our primary test for the diagnosis of lupus anticoagulants, of the lupus anticoagulant. Ann NY Acad Sci 370:359, 1981 several tests make use of limiting concentrations of phospho- nism of a lupus anticoagulant. J Clin Invest 66:397, 1980 1.3,45,46 in the presence of platelets

Fig 5. Comparison of the dilute RVVT with the aPTT (A) and the TTI (B). Open circles are patients with IgM lupus anticoagu- lants. Closed circles are patients with IgG or a mixture of IgG and IgM lupus anticoagulants. Dotted lines indicate upper limits of normal for the tests.

phospholipid in micellar form, whereas the TTI and the prothrombin time (PT) make use of tissue thromboplastin, in which the phospholipid is protein-bound. Third, the tests vary in their response to deficiencies of clotting factors and to antibodies to clotting factors. For instance, antibodies to factor VIII may prolong the aPTT, but not the RVVT. Finally, there appear to be variations in test sensitivity related to the immunoglobulin class of the lupus anticoagu- lant; for example, as we have shown, some IgM anticoagu- lants do not prolong the TTI, although they do prolong other tests. As a result, the incidence of lupus anticoagulants has not been clearly established, since patients may be positive in one test and not another.

Strategies to increase the sensitivity of tests have taken two forms. Since lupus anticoagulant activity is less evident in the presence of platelets,1,3,45,46 the use of platelet-free plasma has been advocated. Second, as in our procedure, several tests make use of limiting concentrations of phospholipids to increase their sensitivity. We have chosen the RVVT as our primary test for the diagnosis of lupus anticoagulants, since it is unaffected by the presence of antibodies to factors VIII, IX, or XI, and have further increased the sensitivity of the test by using limiting concentrations of both phospholipid and venom. This test is easy to perform and highly reproducible. Nevertheless, it is not entirely specific for lupus anticoagulants. Coagulation factor deficiencies can prolong the dilute RVVT, but these can be easily excluded by repeating the test on a mixture of normal and patient plasma. The presence of an antibody to factor V, an extremely rare event, also prolongs this test. However, in one factor V antibody patient whom we had the opportunity to study, substitution of ionophore-treated platelets for the phospholipid reagent did not correct the test, unlike the findings with lupus anticoagulants. Furthermore, the presence of a factor V antibody is associated with a marked prolongation of the PT, a rare occurrence with lupus anticoagulants. Nevertheless, definitive exclusion of a factor V antibody requires specific measurement of factor V inhibition in a mixture of patient and normal plasma.

Finally, therapeutic concentrations of heparin prolong the dilute RVVT, although to a somewhat lesser extent than the aPTT (Fig 4). Heparin effects can be ruled out by measurement of the thrombin time, since this test is normal in the presence of a lupus anticoagulant.

The significance of the presence of a lupus anticoagulant does not lie in its association with bleeding, which rarely, if ever, occurs as a result of the lupus anticoagulant alone,3,7,8,15 but rather in the fact that approximately 25% to 30% of patients with this antibody have a history of thromboembolic phenomena,10,11 or repeated spontaneous abortions.16,17 The presence of anticardiolipin antibodies, as measured by any one of several immunologic techniques, has also been identified as a risk factor for thrombosis.18,26,47 However, the relationship between these two measurements has not been evaluated adequately. It is clear, for example, that some types of "anticardiolipin" antibodies are not associated with an increased thrombotic risk. For example, positive serologic tests in patients with syphilis are due to reactivity of patient serum with cardiolipin, yet patients with syphilis do not have an increased prevalence of lupus anticoagulants or of thromboembolic disease.48 For an adequate understanding of the biologic role of antibodies reactive with anionic phospho- lipids, it will be necessary to standardize both types of tests. The dilute RVVT which we describe here is simple and reproducible. Moreover, as we have demonstrated, it is more sensitive than the aPTT and the TTI, and thus should be highly useful as a screening diagnostic test for further studies.

ACKNOWLEDGMENT

We wish to thank E. Batlle for expert secretarial assistance.

REFERENCES

3. Shapiro SS, Thiagarajan P: Lupus anticoagulants. Prog
Thromb Hemost 5:2163, 1982
4. Lafer EM, Rauch J, Andrzejewski C, Mudd D, Furie B,
Schwartz RS, Stollar BD: Polyspecific monoclonal lupus auto-
immunies reactive with both polynucleotides and phospholipids. J Exp
5. Harris EN, Gharavi AE, Tincani A, Chan JKH, Engert H,
Mantelli P, Allegro F, Ballestrieri G, Hughes GRV: Affinity puri-
ified anticardiolipin and anti-DNA antibodies. J Clin Lab Immunol
17:155, 1985
thrombosis with a lupus coagulation inhibitor in the absence of
7. Feinstein DI, Rapaport SI: Acquired inhibitors of blood coagu-
lation. Prog Thromb Haemost 1:75, 1972
Haemostasis 3:65, 1974
9. Schleider MA, Nachman RL, Jaffe EA, Coleman M: A
10. Bowie EJW, Thompson JH Jr, Pascuzzi CA, Owen CA J Jr:
Thrombosis in systemic lupus erythematosus despite circulating
11. Carreras LO, Vermylen JG: Lupus anticoagulant and throm-
bosis—Possible role of inhibition of prostacyclin formation. Thromb
Haemost 48:38, 1982
12. Carreras LO, Defreyn G, Machin SJ, Vermylen J, Deman R,
Spitz B, Assche AV: Arterial thrombosis, intrauterine death and
"lupus" anticoagulant: Detection of immunoglobulin interfering
with prostacyclin formation. Lancet 1:244, 1981
13. Boey ML, Colaco CB, Gharavi AE, Elkon KB, Loizou S,
Hughes GRV: Thrombosis in systemic lupus erythematosus: Strik-
ing association with the presence of circulating lupus anticoagulant.
and thrombosis: Report of 4 cases. Clin Lab Haematol 2:139,
1980
15. Glueck HI, Kant KS, Weiss MA, Pollack VE, Miller MA,
Coots M: Thrombosis in systemic lupus erythematosus: Relation to
the presence of circulating anticoagulant. Arch Intern Med
145:1389, 1985
17. Elias M, Eldor A: Thromboembolism in patients with the
"lupus"-type circulating anticoagulant. Arch Intern Med 144:510,
1984
18. Lechner K, Pabinger-Fasching I: Lupus anticoagulant and
thrombosis: A study of 25 cases and review of literature. Haemosta-
sis 15:254, 1985
death and circulating anticoagulant ("antithromboplastin"). Acta
Med Scand 197:153, 1975
20. Farquharson RG, Pearson JF, John L: Lupus anticoagulant
and pregnancy management. Lancet 2:228, 1984
21. Gardlund B: The lupus inhibitor in thromboembolic disease
and intrauterine death in the absence of systemic lupus. Acta
Med Scand 215:293, 1984
22. Lubbe WF, Liggins GC: Lupus anticoagulant and pregnancy.
23. Reece EA, Romero R, Clyne LP, Kritz NS, Hobbins JC:
24. Lockshin MD, Duzin ML, Goel S, Qamar T, Magid MS,
Jovanovic L, Ferene M: Antibody to cardiolipin as a predictor of
fetal distress or death in pregnant patients with systemic lupus
25. Firkin BG, Howard MA, Radford N: Possible relationship
between lupus inhibitor and recurrent abortion in young women.
Lancet 2:366, 1980
26. Gabriloff L, Samama M, Conard J, Horellou MH, Servelle M:
Anticoagulant circulant antiprothombinase, thromboses et avorte-
ments spontaneous, une nouvelle observation. Nouv Presse Med
9:2159, 1980
27. Soulier JP, Boffa MC: Avortements a repetition, thromboses
et anticoagulant circulant anti-thromboplastine: trois observations.
Nouv Presse Med 9:859, 1980
Asche A, Renauer M: Decidual vasculopathy and extensive placental
infection in a patient with repeated thromboembolic accidents,
recurrent fetal loss and a lupus anticoagulant. Am J Obstet Gynecol
142:829, 1982
30. Canoso RT, Hutton RA, Deykin D: A chloropromazine
31. Canoso RT, Sise HS: Chloropromazine-induced lupus anti-
coagulant and associated immunologic abnormalities. Am J Hematol
13:121, 1982
32. Triplett DA, Brandt JT, Kaczer D, Schaeffer J: Laboratory
diagnosis of lupus inhibitors: A comparison of the tissue thrombo-
plastin inhibition procedure with a new platelet neutralization
33. Thiagarajan P, Shapiro SS: Lupus anticoagulants. In Colman
RW (ed): Methods in Hematology: Disorders of thrombin formation
other than hemophilia. Livingston, New York, 1983, p 101
and Thrombosis. Grune & Stratton, Orlando, Fl, 1964, p ?
35. Kasper CK, Aledort LJ, Counts RB, Edson JR, Fratantoni
J, Green D, Hampton JW, Hilgartner MW, Lazerzon J, Levine PH,
McMillan CW, Pool JG, Shapiro SS, Shulman NR, van Eys J: A
more uniform measurement of factor VIII inhibitors. Thromb Diath
Haemorrh 34:869—872, 1975
36. Loeliger A: Prothrombin as cofactor of the circulating antico-
agulant in systemic lupus erythematosus? Thromb Diath Haemorrh
3:237, 1959
37. Rivard GE, Schifman S, Rapaport SI: Cofactor of the lupus
anticoagulant. Thromb Diath Haemorrh 32:554, 1974
38. Exner T, Rickard KA, Kronenberg H: A sensitive test
demonstrating lupus anticoagulant and its behavioural pattern. Br J
Haematol 40:143, 1978
39. Alving BM, Baldwin PE, Richards RL, Jackson BJ: The
dilute phospholipid APTT: A sensitive assay for verification of lupus
40. Green D, Hougie C, Kazmier FJ, Lechner K, Mannucci PM,
Rizza CR, Sultan Y: Report of the working party on acquired
anticoagulants by the activated partial thromboplastin time. The
central role of phosphatidylserine. Thromb Haemostas 52:172,
1984
42. Mannucci PM, Canciani MT, Mari D, Meucci P: The varied
sensitivity of partial thromboplastin and prothrombin time reagents
in the demonstration of lupus-like anticoagulants. Scand J Haematol
22:423, 1979
43. Boffa MC: Evaluation of the phospholipid-related proco-
agulant activity in plasma. A new clue for detecting tendency of
44. Crawford N: The presence of contractile proteins in platelet
microparticles isolated from human and animal platelet-free plasma.
45. Firkin BG, Booth P, Hendrix L, Howard MA: Demonstration

The use of the dilute Russell viper venom time for the diagnosis of lupus anticoagulants

P Thiagarajan, V Pengo and SS Shapiro