The Effect of Platelets in the Activation of Human Blood Coagulation Factor IX by Factor Xla

By Hans Soons, Truus Janssen-Claessen, H. Coenraad Hemker, and Guido Tans

We report here the effect of activated human platelets on the activation of human factor IX by human factor Xla. Factor Xla formed during activation was determined via its ability to activate bovine factor X. To increase sensitivity, phospholipids and bovine factor VIIIa were present in the assay. The kinetic parameters of the factor IX activation were determined in the presence of 10 mmol/L CaCl₂. The Kₘ for factor IX was 0.30 μmol/L and kₐₚ was 2.4 s⁻¹. Activated human platelets inhibited factor IX activation by factor Xla in a dose-dependent manner, whereas unstimulated platelets had no effect. Factor IX activation was inhibited for more than 90% at a platelet concentration of 4 x 10⁸/mL, whereas concentrations of less than 10⁵/mL had no influence. The inhibitory effect could be induced by thrombin, collagen, calcium ionophore A 23187, and adrenalin. The appearance of inhibitory activity could be blocked by the addition of the prostacyclin analogue ZK 36374 at any time during platelet activation. Stirring during platelet activation was not necessary. These results suggest that the inhibition is caused by a release reaction. This was confirmed by centrifugation experiments that showed that the inhibitory activity could be recovered from the supernatant of the activated platelets. The inhibitory activity was destroyed upon boiling and was susceptible to trypsin digestion. Passage of platelet supernatant over ACA 22 showed that the inhibitory activity eluted with an apparent molecular weight of less than 1,200,000 but greater than 669,000. The inhibition of factor Xla was reversible. These data suggest that platelets release an antiprotease of factor Xla that reversibly inhibits factor Xla. Lineweaver-Burk analysis showed that the inhibitor caused both an increase in Kₘ for factor IX and a decrease in kₐₚ of factor IXa formation by factor Xla.

© 1986 by Grune & Stratton, Inc.

HUMAN FACTOR IX is a vitamin K-dependent plasma protein that participates in the intrinsic pathway of blood coagulation. It is present in plasma as a zymogen with a molecular weight (mol wt) of 57,000 daltons (d) at a concentration of 2.6 to 5.0 μg/mL. Human factor IX is converted to a serine protease, factor Xla, through proteolysis of two internal peptide bonds. This results in the release of an activation peptide (11,000 d) from the internal region of the precursor molecule. The resulting factor Xla (46,000 d) consists of a light chain (18,000 d) and heavy chain (28,000 d) held together by a disulfide bond(s). Activation of factor IX in plasma can be accomplished by factor Xla or by the factor VIIa–tissue thromboplastin complex.

Platelets play an important role in blood coagulation. The platelet surface strongly promotes prothrombin and intrinsic factor X activation. The activation of factor IX by factor Xla is one of the few reactions of coagulation for which no surface requirement is known. It has been suggested that collagen-stimulated platelets exhibit factor Xla–activity, which can be determined in a clotting test. However, others have failed to confirm this, and it is not known whether factor Xla is involved. Up till now nothing is known about whether platelets have any effect on the activation of factor IX by factor Xla.

Several assays have been described in literature for the determination of factor IX activation: a coagulation assay in factor IX–deficient plasma, a tritiated activation peptide release assay, an immunoradiometric assay, and an assay in which factor IXa is measured indirectly by determining the initial rate of factor X activation. The most widely used is the tritiated activation peptide release assay, which was originally described for the activation of factor X by Silverberg et al. In highly purified systems the appearance of factor Xa procoagulant activity follows the peptide release by a small lag period. However, in less-purified systems, other enzymes may be present that give rise to similar peptide fragments but destroy the procoagulant activity of factor IX. Therefore, to circumvent these potential difficulties, we have chosen to use an assay for factor IX activation by factor Xla, which detects the functional factor IXa activity via its ability to activate bovine factor X in the presence of phospholipids and CaCl₂. To increase its sensitivity, bovine factor VIIIa was present. In that case, however, care has to be taken to add factor VIIIa under rigorously standardized conditions, since the assay is critically dependent on the amounts of factor VIIIa present.

This study was undertaken to explore the role of platelets in factor IX activation by factor Xla. We present evidence that platelets, upon stimulation, secrete an inhibitor that interferes with factor IX activation by factor Xla.

MATERIALS AND METHODS

Materials. Chromogenic substrates l-tyroglutamyl-l-prolyl-l-arginine-p-nitroanilide hydrochloride (S2337) and N-benzoyl-l-isoleucyl-l-glutamyl-(piperidyl)-glycyl-l-arginine-p-nitroanilide hydrochloride S2366 were purchased from A. B. Kabi Diagnostica, Stockholm. The prostacyclin analogue ZK 36374 was a kind gift from Schering AG, Berlin. Plasma deficient in coagulation factors IX, XI, or XII were from patients congenitally deficient in these factors and were obtained from George King Biomedical, Overland Park, Kan. Hormon tendon collagen was obtained from Hormon-Chemi, Munich. Fatty acid-free human serum albumin and trypsin were from Sigma Chemical Co, St Louis. Two-milliliter plastic flat-bottom reaction tubes were obtained from Sterrill Ltd, Teddington, England; Teflon-coated magnetic stirring bars (7 x 2 mm) were purchased from Bel-Art Products, Pequannock, NJ. All reagents were used of the highest grade commercially available.

Proteins. Human factor IX was purified based on a modification of the isolation procedure described by di Scipio et al. and the sulfated dextran column as described by Miletich et al. was added. Citrated fresh-frozen human plasma was thawed, and benzamidine...
FACTOR IX ACTIVATION AND PLATELETS

(10 mmol/L), heparin (6 mg/mL), and soybean trypsin inhibitor (10 mg/L) were added. The barium citrate absorption was followed by ammonium sulfate precipitations (40% and 70% saturation) before the vitamin K-dependent protein preparation was applied to a diethyl aminoethyl (DEAE)-Sephadex column followed by a heparin-Sephadex column. Finally, a sulfated dextran column was used to purify factor IX. Human factor IXa was prepared from purified human factor IX as described earlier for bovine factor IXa. Human factor XI was purified according to Bouma et al. Human factor XII was isolated as described by Griffin and Cochrane. β-Factor XIIa was prepared from the purified human factor XII as described by Fujikawa and McMullen. Bovine factor X was purified according to Fujikawa et al. Bovine factor VIIIc was prepared as described earlier. Factor VIIIa was prepared by activation of factor VIIIc (1.75 mmol/L) with thrombin (4 mmol/L) for one minute at 37 °C. Bovine thrombin was purified as a prothrombin activation product as described by Rosing et al. The specific activity of the thrombin preparation was 1 National Institutes of Health (NIH) U/mL – 11 nmol/mL when a molecular weight of 35,600 was used for thrombin. The human factor IX, XI, and XII and the bovine factor X, and X11 preparations were homogeneous and pure as determined by gel electrophoresis in the presence of sodium dodecyl sulfate on 10% gels according to Laemmli. The specific activities of the protein preparation as determined with a clotting assay were 193, 211, 74, and 100 U/mg for human factors IX, XI, XII, and bovine factor X, respectively, assuming one unit of human factor IX, XI, and XII to be present per milliliter of human normal plasma and one unit of bovine factor X in one milliliter of bovine normal plasma. All proteins were stored at –70 °C after dialyzing against the following buffers: 50 mmol/L Tris-HCl, 175 mmol/L NaCl at pH 7.9 for human factor IX and bovine factor X; 4 mmol/L sodium citrate, 2 mmol/L acetic acid, 0.15 mol/L NaCl, and 0.5 mmol/L EDTA at pH 5.0 for human factor XI and XII; and 10 mmol/L morpholino ethane sulfonic acid, 175 mmol/L NaCl, 10 mmol/L CaCl2, and 10% glycerol at pH 6.5 for bovine factor VIII. Trypsin was insolubilized by coupling trypsin (60 mg in 0.1 mol/L NaHCO3) to CNBr-activated Sepharose 4B (3 g) at 4 °C overnight according to the manufacturer’s instructions.

Preparation of human factor Xla. Human factor Xla was prepared from human factor XI using human β-factor Xla. To 10 mL of factor XI (0.15 mg/mL) in 4 mmol/L sodium acetate, 2 mmol/L acetic acid, 0.15 mol/L NaCl, pH 5.0, was added 1.25 mL 0.5 mol/L Tris-HCl, 0.15 mol/L NaCl, pH 8.0, at 37 °C. Reaction was started by adding 1.27 mL β-factor Xla (0.59 mg/mL) in 4 mmol/L sodium acetate, 2 mmol/L acetic acid, 0.15 mol/L NaCl at pH 5.0. Factor XI activation was followed by measuring factor Xla amidolytic activity. Activation was completed within 90 minutes. Factor Xla was separated from β-factor Xla on a DEAE-Sephadex column (1.5 x 11.5 cm) at 4 °C in 50 mmol/L Tris-HCl and 150 mmol/L NaCl at pH 8.0. Factor Xla did not adhere to the resin, whereas β-factor Xla was eluted by a linear salt gradient (0.1 to 0.5 mol/L NaCl).

The amidolytic activity of human factor Xla was measured using the chromogenic substrate S2366 in a buffer containing 50 mmol/L Tris-HCl, 150 mmol/L NaCl, 20 mmol/L EDTA, and 0.5 mg/mL human serum albumin, pH 7.9. The kinetic parameters of S2366 hydrolysis by human factor Xla were Km = 0.42 mmol/L and vmax = 758 s⁻¹. Km was calculated using a concentration of factor Xla based on a mol wt of 160,000.

Protein concentrations. Determinations of protein concentrations were routinely done according to Bradford. Factors IXa, Xa and thrombin were determined by active-site titration with p-NPGB-p-nitrophenyl-p'-guanidinobenzoate (p-NPGB) as described earlier. Concentrations of factor IX and factor X were determined by complete activation and subsequent determination of the active enzyme. Factor VIIIa concentrations were determined according to the method of van Dieijen et al. Factor Xla concentrations were determined from the amount of protein present assuming a mol wt of 160,000 d. Phospholipid vesicles. Phospholipid vesicles were made from a mixture of 40 mol/100 mL 1,2-dioleoyl-sn-glycero-3-phosphoserine (PS) and 60 mol/100 mL 1,2-dioleoyl-sn-glycero-3-phosphocholine (PC) in a buffer containing 50 mmol/L Tris-HCl and 175 mmol/L NaCl at pH 7.9 as described by Rosing et al.

Collagen. Collagen was added in the nonfibrillar form, dissolved in acidic dilution buffer obtained from Hormon-Chemie as described by Rosing et al. The minimal amount of collagen inducing aggregation and secretion was 1 to 2 μg/mL. Factor IXa determinations. To follow the activation of factor IX by factor Xla an assay system was developed in which factor IXa was determined via its ability to activate bovine factor X in the presence of CaCl2, phospholipid, and factor VIIIa. Factor IXa–containing samples were diluted in ice-cold buffer containing 50 mmol/L Tris (pH 7.9), 175 mmol/L NaCl, 0.5 mg/mL human serum albumin, and 20 mmol/L EDTA to block further activation of factor IX. The amounts of factor IXa present in the samples were then determined as follows. Three hundred five microliters buffer containing 50 mmol/L Tris (pH 7.9), 175 mmol/L NaCl, 9.8 mmol/L CaCl2, 0.5 mg/mL human serum albumin, and 16.4 μmol/L phospholipid vesicles was prewarmed at 37 °C for 4½ minutes, after which 45 μL bovine factor X (16.67 μmol/L) and a 50-μL sample were added. Factor X activation was started by adding 100 μL factor VIIIa (1.75 μmol/L). The final reaction mixture (500 μL) contained 50 mmol/L Tris (pH 7.9), 175 mmol/L NaCl, 6 mmol/L CaCl2, 2 mmol/L EDTA, 10 μmol/L phospholipid, 1.5 μmol/L factor X, 0.35 nmol/L factor VIIIa, 0.5 mg/mL human serum albumin, and the factor IXa present in the sample. The rate of factor X activation was determined by measurement of the amounts of factor Xa formed after one and two minutes in these reaction mixtures using the factor Xa–specific chromogenic substrate S2337 as described earlier. From the observed rate of factor X activation, the amount of factor IXa present in the sample was calculated using a calibration curve made with known amounts of active-site titrated factor IXa (see also Fig 1).

Kinetic parameters. Km for factor IX and vmax of factor IX activation were determined by measurement of the rate of factor IXa formation in a reaction mixture containing 10 mmol/L CaCl2, 0.5 mg/mL human serum albumin, 0.1 mmol/L factor Xa, and varying amounts of factor IX in HEPES buffer, pH 7.5, using the assay previously described. Km and Vmax (expressed as factor IXa formed per second) were then determined by statistical analysis of the data as described by Eisenthal and Cornish-Bowden. Km was calculated by dividing Vmax with the enzyme concentration assuming a mol wt of 160,000 for factor Xla.

Isolation of human platelets. Blood was drawn by venipuncture from healthy male volunteers who had not taken any medication for at least ten days. As anticoagulants, 1 vol of acid citrate dextrose (0.18 mol/L glucose, 0.08 mol/L trisodium citrate, and 0.052 mol/L citric acid) was added to 5 vol of whole blood. Platelet-rich plasma was obtained after centrifugation at 220 g for 25 minutes. Platelets were isolated by centrifugation at 1000 g for 20 minutes, and the pellet was gently resuspended in calcium-free HEPES buffer (10 mmol/L HEPES, 136 mmol/L NaCl, 2.68 mol/L KC1, 2 mmol/L MgCl2, and 5 mmol/L glucose), pH 6.7, containing 0.4% human serum albumin. The platelets were washed twice in this buffer by centrifugation at 600 g for 15 minutes. During the whole procedure except the last wash, acid/citrate/dextrose was present in the buffer (1 vol to 14 vol buffer). Finally, the platelets were resuspended in HEPES buffer, pH 7.5, containing 0.1% human serum albumin. Platelet concentrations were determined with a Coulter counter.
SOONS ET AL

RESULTS

Validation of the assay for factor IXa. In this study an assay for the activation of factor IX was used in which functional factor IXa activity was determined via the activation of bovine factor X as described earlier. To increase its sensitivity, the activation of bovine factor X by human factor IXa was performed in the presence of CaCl2, phospholipids, and bovine factor VIIIa. The amount of factor Xa formed was linear with time for at least two minutes (data not shown), and the rates of factor Xa formation were determined from the amounts of Factor Xa formed during these two minutes. Figure 1 shows that the rate of factor Xa formation was proportional to the amount of factor IXa added (closed circles). The slope of this plot reflects the rate of factor Xa formation per factor IXa present (59.5 nmol/Xa/min/nmol IXa). An excellent day-to-day reproducibility of the calibration curve could be achieved, since four separate experiments carried out at different days showed an SD of 1.7% in the slope of this plot.

This calibration curve was used in the experiments in which the activation of factor IX by factor IXa was determined. Since the experiments presented here concern the effect of platelets on the activation of factor IX by Factor Xla, the calibration curve was repeated in the presence of 3.2 x 10⁶/mL thrombin/collagen-stimulated platelets (Fig 1, open triangles) or the supernatant thereof (Fig 1, open circles). As can be seen, the presence of the triggered platelets or their supernatants had no effect on the assay for factor IXa.

Factor IX activation by factor Xla. The assay just described was used to assess the kinetic parameters of factor IX activation by factor Xla in the presence of 10 mmol/L CaCl2. It was verified that factor IX activation was linear with time and proportional to the amount of factor Xla used (data not shown). Varying concentrations of factor IX were incubated with factor Xla, and the rate of factor IXa formation was determined in the assay just described. Michaelis-Menten kinetics were observed throughout. The kinetic parameters were Kₘ = 301 nmol/L, and kₕ = 2.4 s⁻¹ assuming a mol wt of 160,000 for factor Xla.

The effect of platelets in the activation of factor IX by factor Xla was studied. Nonstimulated platelets up to concentrations as high as 5 x 10⁸/mL had no effect on factor IX activation. However, in the presence of platelets stimulated by the combined action of thrombin and collagen, the rates of factor IXa formation decreased with time until after two minutes a low rate of factor IXa formation remained (Fig 2). Preincubation of factor IX with the activated platelets for four minutes did not change the time course of factor IX activation. However, when factor Xla was preincubated with

![Factor IXa calibration curve](image-url)

![Effect of platelets on the activation of factor IX](image-url)
the triggered platelets, only the low rate of factor IXa formation remained. This strongly suggests that the inhibition was the result of a direct interaction with factor IXa that was completed within four minutes. Subsequent experiments showed that for platelet concentrations ranging from 10^8 to 10^9/mL a preincubation time with factor Xla of approximately ten minutes sufficed to result in linear rates of factor IXa formation. Therefore, in all subsequent experiments, factor Xla was preincubated for ten minutes with the platelets prior to the addition of factor IX.

The inhibitory effect of activated platelets at a suboptimal platelet concentration (4.10^7/mL) in factor IX activation by factor Xla was studied using different platelet agonists (Table 1). The most potent were thrombin (1.2 nmol/L), calcium ionophore A 23187 (1 μmol/L) and the combined action of thrombin (1.2 nmol/L) and collagen (10 μg/mL), whereas platelets activated by collagen (10 μg/mL) or adrenalin (546 μmol/L) caused a smaller inhibition. Platelets stimulated with adenosine diphosphate (ADP) (25 μmol/L) whether in the absence or presence of fibrinogen (0.7 mg/mL), showed no significant inhibition of factor IX activation by factor Xla under these conditions. Stirring of the platelets was not necessary to achieve the inhibitory activity.

Figure 3 shows that factor IX activation was inhibited in a dose-dependent way. Factor IX formation was not influenced at platelet concentrations less than 10^8/mL, and at higher platelet concentrations inhibition was observed until at a concentration of 4×10^9/mL factor IX activation was almost completely inhibited. During the platelet activation the lysis was always smaller than 2%. Lactic dehydrogenase (LDH) was taken as the parameter for platelet lysis. One hundred percent lysis was the amount of LDH measured when the platelets were sonicated. When the triggered platelet suspension was centrifuged, all the inhibitory activity was recovered in the supernatant (Fig 3), indicating that the inhibition is the result of platelet secretion upon triggering.

The release of inhibition was studied using the prostacyclin analogue ZK 36374. This substance effectively blocks any further platelet aggregation and platelet release reactions when added to platelet suspensions (Fig 4). The addition of 100 nmol/L prostacyclin analogue prior to stimulation with 0.2 nmol/L thrombin effectively blocked any release of inhibitory activity. The time course of release of inhibitor was determined by the addition of ZK 36374 at various time intervals after the addition of thrombin to the platelets. The amounts of inhibitory activity released were determined in the supernatant after centrifugation. Figure 5 shows that secretion of the inhibitor started after a small lag period of 10 seconds and reached a plateau after a platelet activation time of approximately four minutes.

Preliminary characterization of the inhibitory activity. To gain insight into the nature of the inhibitory activity secreted by platelets, the supernatant of a large amount of stimulated platelets (1.8×10^{10}) was collected, concentrated, and passed over a Sepharose ACA 22 column (2.5 × 85 cm). Figure 6 shows that the inhibitory activity was included in the column volume but eluted earlier than the largest mol wt marker available (669,000), thus precluding an accurate estimation of the apparent mol wt. The fractions of the column containing inhibitor were pooled and

Table 1. The Effect of Different Platelet Stimulators in Factor IX Activation by Factor Xla

<table>
<thead>
<tr>
<th>Trigger Substance</th>
<th>Rate of Factor IX Activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No trigger</td>
<td>100%</td>
</tr>
<tr>
<td>ADP</td>
<td>95%</td>
</tr>
<tr>
<td>ADP/fibrinogen</td>
<td>92%</td>
</tr>
<tr>
<td>Adrenalin</td>
<td>84%</td>
</tr>
<tr>
<td>Collagen</td>
<td>84%</td>
</tr>
<tr>
<td>Thrombin</td>
<td>62%</td>
</tr>
<tr>
<td>A23187</td>
<td>58%</td>
</tr>
<tr>
<td>Thrombin/collagen</td>
<td>59%</td>
</tr>
<tr>
<td>Thrombin/collagen*</td>
<td>58%</td>
</tr>
</tbody>
</table>

*The platelets were activated by thrombin (1.2 nmol/L) and collagen (10 μg/mL) without stirring.

Platelets (4×10^8/mL) were incubated in HEPES buffer (pH 7.5) at 37 °C for 12 minutes in the presence of ADP (25 μmol/L), ADP (25 μmol/L), human fibrinogen (0.7 mg/mL), adrenalin (546 μmol/L), collagen (10 μg/mL), ionophore A23187 (1 μmol/L), thrombin (1.2 nmol/L), or thrombin (1.2 nmol/L), and collagen (10 μg/mL). During stimulation the platelets were stirred. After this incubation, factor Xla was added and incubated for ten minutes with the activated platelet suspension. The factor IX activation mixture contained 4×10^7/mL platelets, 100 nmol/L factor IX, 0.1 nmol/L factor Xla, and 10 μmol/L CaCl$_2$ in HEPES buffer, pH 7.5. Factor IX activation rates were determined as described in Materials and Methods and expressed as a percentage of the activation rate measured in the presence of unstimulated platelets (3.58 pmol IXa/min/mL).
concentrated, after which a part was treated with trypsin-Sepharose. Table 2 shows that no inhibitory activity or irreversibly inhibit factor with only Sepharose showed of the factor XIa had become available again to participate.

When the experiment with the trypsin-treated inhibitor was repeated in the absence of factor Xla, no activation of factor IX was observed, indicating that no significant amounts of trypsin were coming off the beads (data not shown). The inhibitor was also destroyed when placed in boiling water for one hour. From these data we conclude that the inhibitor is a protein or contains a protein part essential for its activity that is susceptible to trypsin and is heat labile.

The data in Table 3 show that the inhibitor did not destroy or irreversibly inhibit factor Xla. When factor Xla was incubated with a high amount of inhibitor, only 21% of the rate of factor IX activation remained. However, when this incubation mixture was diluted fivefold, the rate of factor IX activation was only 1.6-fold less. Since rates of factor IX activation were linear with the amount of factor Xla present (see also the aforementioned), this indicated that some 50% of the factor Xla had become available again to participate.

The ATP release was monitored by luciferin-luciferase reaction (A), and platelet aggregation was measured at the same time (B). When ZK 36374 was added one minute before thrombin, no ATP release and platelet aggregation was measured (Aa and Ba). When ZK 36374 was added one or three minutes after thrombin, ATP release and aggregation stopped immediately (Aa, Bb, and Aa, Bb). ATP release and platelet aggregation were also measured in the absence of ZK 36374 (Aa and Ba). ATP release is expressed as a percentage, with ATP release in the absence of ZK 36374 taken as 100%.

The data in Table 2 shows that no inhibitory activity remained after this treatment, whereas a control experiment with only Sepharose showed no loss of inhibitory activity. When the experiment with the trypsin-treated inhibitor was repeated in the absence of factor Xla, no activation of factor IX was observed, indicating that no significant amounts of trypsin were coming off the beads (data not shown). The inhibitor was also destroyed when placed in boiling water bath for one hour. From these data we conclude that the inhibitor is a protein or contains a protein part essential for its activity that is susceptible to trypsin and is heat labile.

The data in Table 3 show that the inhibitor did not destroy or irreversibly inhibit factor Xla. When factor Xla was incubated with a high amount of inhibitor, only 21% of the rate of factor IX activation remained. However, when this incubation mixture was diluted fivefold, the rate of factor IX activation was only 1.6-fold less. Since rates of factor IX activation were linear with the amount of factor Xla present (see also the aforementioned), this indicated that some 50% of the factor Xla had become available again to participate.
FACTOR IX ACTIVATION AND PLATELETS

Table 2. The Effect of Trypsin on the Activity of the Inhibitor in Factor IX Activation by Factor Xla

<table>
<thead>
<tr>
<th>Activator</th>
<th>Rate of Factor IX Activation (pmol IXa/min/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Xla</td>
<td>3.97</td>
</tr>
<tr>
<td>Factor Xla, inhibitor</td>
<td>0.61</td>
</tr>
<tr>
<td>Factor Xla, inhibitor after incubation</td>
<td>0.63</td>
</tr>
<tr>
<td>with Sepharose 4B</td>
<td></td>
</tr>
<tr>
<td>Factor Xla, inhibitor after incubation</td>
<td>4.06</td>
</tr>
<tr>
<td>with trypsin-Sepharose</td>
<td></td>
</tr>
</tbody>
</table>

Human factor IX was activated by human factor Xla at 37 °C in HEPES buffer (pH 7.5) containing 100 nmol/L factor IX, 0.1 nmol/L factor Xla, 0.5 mg/mL human serum albumin, and 10 mmol/L CaCl2 in the absence or presence of inhibitor. The rate of factor IXa formation was determined as described in Materials and Methods. Factor Xla was preincubated with inhibitor for 15 minutes at 37 °C before addition to the reaction mixture. The effect of trypsin on the inhibitor was determined by incubating 1.0 mL inhibitor with 0.25 mL trypsin-Sepharose slurry (or Sepharose 48 as a control) at 4 °C. After two hours, the suspension was centrifuged and the supernatant added to factor Xla to determine the residual inhibitory activity. The inhibitor preparation used was obtained from the ACA-22 column shown in Fig 6. Fractions 48 to 58 of this column contained inhibitory activity and were pooled. Human serum albumin, 2.5 mg, was added to the pool (44 mL), which was subsequently concentrated tenfold before use in the experiment described here.

in factor IX activation. The experiment in Fig 7 also illustrates this point. Here the time course of the disappearance of factor Xla amidolytic activity towards the chromogenic substrate S2366 was followed in an incubation mixture containing 0.4 nmol/L factor Xla and the supernatant of 2.2 x 10^4/mL activated platelets (closed squares). After equilibrium was reached, part of this mixture was diluted fivefold, and the remaining activity (expressed as a percentage of the amount of factor Xla present) was followed with time (closed circles). As can be seen, the amidolytic activity increased in the diluted mixture until the same final level was found as in a mixture that had been diluted fivefold at time 0.

Table 3. Effect of Dilution on the Activity of the Inhibitor in Factor IX Activation by Factor Xla

<table>
<thead>
<tr>
<th>Activator</th>
<th>Rate of Factor IXa Formation (pmol IXa/min/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor Xla (0.1 nmol/L)</td>
<td>3.77</td>
</tr>
<tr>
<td>Factor Xla (0.1 nmol/L), supernatant</td>
<td>0.80</td>
</tr>
<tr>
<td>of 2 x 10^5/mL platelets</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Factor Xla (0.11 nmol/L) was incubated at 37 °C in HEPES buffer (pH 7.5) containing 1 mg/mL human serum albumin and 10 mmol/L CaCl2 in the presence or absence of supernatant from 2.2 x 10^5/mL stimulated platelets (obtained as described in the legend to Fig 6). After 15 minutes, part of this mixture was diluted fivefold in the same buffer and further incubated at 37 °C for 30 minutes to allow reequilibration of factor Xla with inhibitor (see legend to Fig 7). After this time interval, factor IX activation in each of these mixtures was determined by the addition of a final concentration of 100 nmol/L. Final concentrations of factor Xla and platelet supernatants reached are indicated in the table and were fivefold less in the diluted mixtures. The rate of factor IXa formation was then determined by withdrawing samples from these reaction mixtures at two and four minutes and assaying for factor IXa as described in Materials and Methods.

DISCUSSION

In this paper we report the effects of stimulated human platelets on the activation of human factor IX by factor Xla. We developed an assay that measures functional factor IXa via its ability to activate bovine factor X as described earlier except that apart from phospholipids and CaCl2 bovine factor VIIIa was also present in the assay. The
presence of factor VIIIa increases the sensitivity some 3,000-fold but has the disadvantage that for each new batch of factor VIII a new standard curve must be made. When this is done, a good day-to-day reproducibility can be achieved, and the assay allows accurate determination of factor IXa down to levels of 2.5 pmol/mL (Fig 1). Different batches of factor IXa, factor X, and phospholipid can be used interchangeably to produce the same standard curve provided equal amounts of these reagents are used. Using this assay, we determined the kinetic parameters of factor IX activation by factor XIa, and we found a K_m for factor IX of 0.3 μmol/L and a k_{m} of 2.4 s⁻¹/factor Xla molecule of 160,000 mol wt. Some disagreement exists in the literature concerning these kinetic parameters. Walsh et al.⁵ using factor XIa activated with thrombin (1.2 nmol/L) and collagen (10 μg/mL) under continuous stirring followed by centrifugation for two minutes in an Eppendorf Microfuge to obtain the supernatants. Subsequently, the CaCl₂ concentration was adjusted to 10 mmol/L, and factor Xla was added and incubated for ten minutes at 37 °C before the addition of thrombin (1.2 nmol/L) and collagen (10 μg/mL) under continuous stirring followed by centrifugation for twelve minutes at 37 °C in the presence of 3 mmol/L CaCl₂ with 10 mmol/L CaCl₂, 0.5 mg/mL human serum albumin, varying amounts of factor IX. The final reaction mixtures contained 10 mmol/L CaCl₂ added and incubated for ten minutes at 37 °C before the addition of thrombin (1.2 nmol/L) and collagen (10 μg/mL) under continuous stirring followed by centrifugation for two minutes in an Eppendorf Microfuge to obtain the supernatants. Subsequently, the CaCl₂ concentration was adjusted to 10 mmol/L, and factor Xla was added and incubated for ten minutes at 37 °C before the addition of factor IX. The final reaction mixtures contained 10 mmol/L CaCl₂, 0.5 mg/mL human serum albumin, varying amounts of factor IX, and 0.1 nmol/L factor Xla in HEPES buffer (pH 7.5) without inhibitor (O) and in the presence of supernatant obtained from 2 x 10^{7}/ml platelets (B), 6 x 10^{7}/ml platelets (A), and 2 x 10^{7}/ml platelets (III). Rates of factor IX activation were determined as described in Materials and Methods, and from these, the Lineweaver-Burk plots were constructed. The kinetic parameters obtained were 14.4 nmol/L factor IXa/min and 0.3 μmol/L (O), 10.0 nmol/L factor IXa/min and 0.37 μmol/L (B), 7.9 nmol/L factor IXa/min and 0.6 μmol/L (A), and 3.0 nmol/L factor IXa/min and 0.99 μmol/L (III).

Using this assay, we determined the effect of platelets on the rate of factor IXa formation by factor Xla. The data reported here clearly demonstrate that stimulated platelets cause a dramatic decrease in the rate of factor IX activation by factor XIa, whereas unstimulated platelets have no effect. This inhibition is caused by a direct interaction with factor XIa, since steady-state rates of factor IXa formation can only be achieved by incubation of factor XIa with the stimulated platelets, whereas preincubation of factor IX has no effect (Fig 2). Moreover, factor XIa amidolytic activity towards the chromogenic substrate S2366 is also inhibited (see Figs 6 and 7). Various platelet agonists can bring about this effect, the most potent being thrombin or the ionophore A23187. The set of agonists that can induce this effect (Table 1) as well as the rapid time course of the appearance of inhibitory activity after stimulation of the platelets (Fig 5) suggests the involvement of a release reaction. This is in accordance with the finding that the inhibitory activity is quantitatively recovered in the supernatant after centrifugation in a microfuge for five minutes (Fig 3). The amount of inhibitory activity is dependent on the amounts of stimulated platelets present. Thus, under the conditions used in our experiments, factor IX activation is not affected by the presence of 10^{7}/ml platelets. At the physiologic platelet concentration (2 x 10^{7}/ml), about 10% of the factor IX activation rate is left. Thus, the inhibitory activity reported here may play a role under physiologic circumstances. However, more experiments will be needed to gain insight into this.

The high apparent mol wt with which the inhibitor elutes from an ACA 22 column as well as the rather broad elution profile (see Fig 6) suggests that the inhibitor consists or is part of high-mol wt complexes. This may indicate that the inhibitor is associated with the so-called platelet dust. However, an essential part of the large inhibitor molecules eluting from the ACA 22 column must be proteinlike in nature, since the inhibitory activity was completely destroyed after tryptic digestion. Moreover, the activity is also destroyed upon boiling. Therefore, at this moment we work under the hypothesis that the inhibitory activity is due to a protein that is released. This is most likely an antiprotease that reversibly blocks factor XIa active sites both for factor IX activation and for S2366 conversion, since the inhibition seems reversible (see Table 3 and Fig 6). This inhibition is of the mixed type as determined by Lineweaver-Burk analysis of factor IX activation by factor Xla in the presence of varying amounts of inhibitor (Fig 8).

The main plasma inhibitors of factor Xla are α₁-antitrypsin and antithrombin III. α₁-Antitrypsin is also present in platelets and can be secreted upon stimulation. However, these inhibitors have a much lower molecular weight and irreversibly block factor Xla. Therefore, our data do not suggest any involvement of these proteins in the inhibition that we observe in our experiments. At this moment we do not know whether under different experimental conditions the α₁-antitrypsin present in platelets may become involved in the inhibition of factor IX activation by factor Xla.

It has been suggested that high-mol wt kininogen (HMWK) protects factor Xla against inactivation by plasma inhibitors, and a recent report of Schmaier et al shows that HMWK can be secreted from human platelets.
upon stimulation. The results presented here show that the rate of factor IX activation by factor XIa decreases in the presence of stimulated platelets. Sinha et al have recently presented evidence that factor XIa needs HMWK to bind to stimulated platelets and that the amount of HMWK secreted by platelets is not sufficient to cause measureable factor XIa binding to triggered platelets. Therefore, it will be important to investigate whether factor XIa binding via HMWK to stimulated platelets can prevent the inhibition of factor IXa formation caused by stimulated platelets in the absence of external HMWK.

ACKNOWLEDGMENT
We thank Dr Gerbrand van Dieijen for initiating this investigation. Dr J. Rosing and Dr J. van Wersch are acknowledged for valuable discussions. We would also like to thank T. Camphuisen for typing this manuscript.

REFERENCES
8. Walsh PN, Griffin JH: Contributions of human platelets to the proteolytic activation of blood coagulation factors XII and XI. Blood 57:106, 1981
33. Bode AP, Sandberg H, Dombrose FA, Lentz BR: Association of factor V activity with membranous vesicles released from human

The effect of platelets in the activation of human blood coagulation factor IX by factor Xla

H Soons, T Janssen-Claessen, HC Hemker and G Tans