Isolation of Circumferential Microtubules From Platelets Without Simultaneous Fixation

By James G. White, E. Radha, and Marlys Krumwiede

Circumferential bands of microtubules (MT) support the discoid shape of resting platelets and participate with the contractile apparatus in shape change and internal contraction following activation. Elucidation of interactions between the circumferential coils and proteins of the stable and contractile cytoskeleton is essential for understanding MT function in platelet physiology. A previous investigation demonstrated that the circumferential rings can be isolated intact from resting platelets following simultaneous exposure to glutaraldehyde and Triton X-100. However, the use of fixation prevented the characterization of protein interactions. The present study has circumvented this problem by developing a procedure for isolating intact microtubule coils from detergent-treated platelets without the use of fixative agents. Incubation of the platelets for intervals of 30 to 60 minutes with the microtubule-stabilizing agent taxol preserved the circumferential bundle after extraction with Triton X-100 even after washing five times. The procedure has made it possible to carry out protein studies on isolated microtubule rings and associated proteins.

THE CIRCUMFERENTIAL microtubule (MT) is an important constituent of the platelet cytoskeleton. It supports the discoid shape of resting platelets and participates in the process of internal contraction when the cells are stimulated. The precise mechanisms through which circumferential MT function in platelet physiology are unclear.

To evaluate the role of the circumferential MT in platelet physiology, we have recently developed a procedure for isolating intact MT coils from platelets in suspension. The method has been useful for studying the fate of MT in activated platelets, but biochemical and physiologic experiments have been limited because glutaraldehyde was needed in the preparative procedure. In recent investigations we have found a way to avoid the presence of a fixative during the preparation of MT coils from suspended platelets. The addition of a relatively large concentration of taxol, an MT-stabilizing agent, obviated the need for glutaraldehyde and permitted the recovery of large numbers of MT coils in a nearly native state.

MATERIALS AND METHODS

General. After informed consent, blood was obtained from healthy adult donors whose platelets had been evaluated in many previous studies from our laboratory. Samples obtained by venipuncture were mixed immediately with citrate-citric acid, pH 6.5 (93 mmol/L sodium citrate, 70 mmol/L citric acid, and 140 mmol/L dextrose), in a ratio of nine parts blood to one part anticoagulant. Platelet-rich plasma (PRP) was separated from the supernatant from extracted platelets were mounted on circular glass dishes. In addition, the lysate and samples of washed, resuspended MT were deposited on millipore filters. After contact with surfaces for 2½ minutes, they were rinsed with cytoskeleton buffer, and examined unfixed or after postfixation for two or more hours in 2.5% glutaraldehyde in the same buffer.

Preparation of whole mounts. Single drops of the extracted platelets were placed on formvar-coated, carbon-stabilized grids for 2½ minutes, rinsed with cytoskeleton buffer, and examined unfixed or after postfixation for two or more hours in 2.5% glutaraldehyde in the same buffer. Grids were then rinsed twice with distilled water and drained briefly on the edge with filter paper. Finally, the grids were passed through four drops of 3% sodium silicotungstate, drained of excess stain, and allowed to dry.

Preparation for scanning electron microscopy. Large drops of the supernatant from extracted platelets were mounted on circular glass disks. In addition, the lysate and samples of washed, resuspended MT were deposited on millipore filters. After contact with surfaces for 2½ minutes, they were rinsed with cytoskeleton buffer and postfixed in 2.5% glutaraldehyde as previously described for whole mount preparations. The grids were then dehydrated in a graded series of alcohols, substituted with freon, and dried by the critical point method of Anderson in a Bomar apparatus (Bomar Instruments, Tacoma, Wash.). The grids were then coated with a 50 Å layer of carbon and gold, the grids were examined in a Cambridge S4D-10 scanning electron microscope (Cambridge Instruments, Cambridge, England).

From the Departments of Laboratory Medicine & Pathology and Pediatrics, University of Minnesota Health Sciences Center, Minneapolis.

Supported by US Public Health Service Grants HL-11880, CA-21737, AM-17697, and HL-27355 and a grant from the March of Dimes.

Address reprint requests to Dr James G. White, Department of Laboratory Medicine & Pathology, University of Minnesota Health Sciences Center, Minneapolis, MN 55455.

©1986 by Grune & Stratton, Inc.

0006-4971/86/6704-0004$03.00/0
Preparation for polyacrylamide gel electrophoresis (PAGE). Six to eight detergent-extracted, 0.5-mL platelet samples were combined and centrifuged to obtain a pellet. Clear supernatant was discarded and the pellet resuspended in Hanks' balanced salt solution (HBSS) containing taxol at 2×10^{-4} mol/L. The washing procedure was repeated five times and the final pellet resuspended in 0.5 mL of HBSS with taxol. The protein content of the platelet concentrate and isolated MT coils was measured by the method of Lowry et al. Sodium dodecyl sulfate (SDS)-PAGE was performed according to the method of Laemmli. A gradient slab of 8% to 15% was used for analyzing the protein profile. The samples were dissolved in an SDS sample buffer and boiled for two minutes. Protein standards were electrophoresed for molecular weight estimations. Gels were stained with brilliant Coomassie blue R and scanned with a Kratos spectrodensitometer (Kratos Analytical Instruments, Westwood, NJ) connected to a Hewlett-Packard integrator (Hewlett-Packard, Palo Alto, Calif).

Immunoblot preparation. PAGE gels of the isolated MT coils prepared as previously described were transferred to nitrocellulose electrophoretically according to the method of Towlin et al. After blotting, the nitrocellulose was incubated with gelatin to block nonspecific protein-binding sites. The blot was then incubated with a monoclonal antibody to \(\beta\)-tubulin of mouse origin (Cooper Biomedical, Malvern, Pa). The immune complex was detected with peroxidase-labeled antibody to mouse IgG after incubation in 4-chloro-l-naphthol.

RESULTS

Morphology. MT coils recovered by detergent lysis from platelets incubated for an hour with a high concentration of taxol were essentially identical in appearance to the coils isolated from platelets after simultaneous exposure to detergent and glutaraldehyde fixative. Examination of glass disks (Figs 1A and 1B) and millipore filters (Figs 2A and 2B) in the scanning electron microscope revealed fields that were virtually free of any other structures but MT coils. Whole-mount preparations viewed in the transmission microscope were also nearly devoid of cellular debris. MT coils consisted of several concentric rings, ranging from three to 12 with a median of eight. Two free ends were observed extending from some coils, but multiple free ends were also common (Figs 3A and 3B). MT coils were more loosely arranged in the absence of glutaraldehyde fixation during isolation or mounting, but the basic circular configuration of the loops was well maintained in most examples.

Biochemistry. Depending on the amount of protein applied to the gel, SDS-PAGE of proteins solubilized from multiply washed MT rings revealed a dense single or double band migrating with the same mobility as the tubulin standard (Fig 4). In addition to tubulin, several other proteins were evident on the gels. A band at approximately 210 K may represent an MT-associated protein (MAP). Two or three additional protein bands with apparent molecular
weights above 100,000 may represent breakdown products of high-molecular weight (HMW) proteins since proteolytic inhibitors were not included during lysis or washing. A low-molecular weight (LMW) band with the mobility of the actin standard was constantly present. Between tubulin and actin were two or three bands that may represent LMW MAPs. Immunoblots prepared from the isolated MT coils, incubated with a monoclonal antibody to tubulin, and stained with a peroxidase labeled second antibody revealed a specific reaction with platelet tubulin (Fig 5).

Densitometry of PAGE gels revealed that tubulin constituted 43% to 48% of the protein on the gels. Measurement of the protein content of the concentrated platelet suspension and multiply washed MT coils, adjusted on the basis of the densitometric observations, revealed that tubulin constituted about 3.3% to 3.8% of the total platelet protein.

DISCUSSION

The present report has described a relatively simple way to stabilize the circumferential MT supporting the discoid shape of resting platelets during isolation and purification. Taxol, an MT-stabilizing agent, was added to platelet suspensions at twice the concentration used in previous studies. Platelets were incubated for an hour and then lysed in a cytoskeletal buffer containing Triton X-100. The presence of taxol prevented disassembly and disorganization of MT coils during rupture of the cell membranes by detergent. Examination of glass disks prepared for scanning electron microscopy after contact with drops of the lysed platelet suspension for 2½ minutes revealed MT coils evenly distributed on the surface. Millipore filters on which MT coils isolated from 4 mL of cleared suspension had been deposited were completely covered by coils. Thus, the procedure appears to provide a simple way to obtain substantial numbers of MT coils for evaluation without requiring the use of glutaraldehyde or other fixatives.

The morphology of unfixed MT coils was generally well preserved by the pretreatment with taxol. The loops making up the MT coils had separated in some examples, but in most the resemblance to a lariat was well preserved. The number of free ends of MT extending from the coils was variable. Fracture of the delicate structures during attachment to grids and glass coverslips or in the process of air or critical-point drying may have caused some disruption. However, survival of the basic concentric configuration suggests that cohesive forces may be involved in holding loops of the coiled MT together. The nature of these forces is not known but may involve one or several types of MAPs.

SDS-PAGE proteins solubilized from the multiply washed MT coils revealed a prominent tubulin band identical in...
mobility to the brain-derived standard. Immunoblotting and staining with a monoclonal antibody to tubulin confirmed that the band was authentic MT protein. Despite the multiple washings and resuspensions in buffer, several other protein remained associated with MT coils. Both HMW and LMW proteins, including one with a mobility identical to the actin standard, were present in the gels. One of the HMW proteins had a mobility similar to an MAP described previously in platelets and other cell types.22-25 Two or three protein bands lying between actin and tubulin may also represent MAPs. Studies to characterize these proteins are continuing.

Analysis of the gels by densitometry revealed that tubulin constituted approximately 40\% to 50\% of the total. Based on protein determinations on the concentrated platelet suspension and the multiply washed coils, the amount of tubulin recovered constituted about 3.3\% to 3.8\% of the total platelet protein. The recovery obtained in this study agrees well with the figure of 3.1\% reported by Steiner and Ikeda.26

Taxol has been used previously to facilitate isolation of MT and MAPs from other cell types.27 However, the procedure involving taxol was used primarily to separate MAPs from MT reassembled after earlier isolation of tubulin from calf brain. The present investigation appears to be the first study to use taxol for maintenance of MT organization observed in the intact cell during isolation and multiple washing. As a result, the proteins remaining in an insoluble state with isolated MT during washing may be very important to MT function in intact platelets. Studies to identify and characterize these proteins by immunoelectron microscopy are in progress.

NOTE ADDED IN PROOF

Following acceptance of this manuscript, a report using a similar approach to isolating the platelet circumferential microtubule has appeared (Kenney DM, Linck RW: The cytoskeleton of unstimulated platelets: Structure and composition of the isolated marginal microtubular band. J Cell Sci 78:1, 1985).

REFERENCES

8. White JG and Krumwiede M: Isolation of microtubule coils from exposure to aggregating agents. (submitted)

Isolation of circumferential microtubules from platelets without simultaneous fixation

JG White, E Radha and M Krumwiede

Updated information and services can be found at:
http://www.bloodjournal.org/content/67/4/873.full.html

Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml