CONCISE REPORT

Demonstration of Burst-Promoting Activity of Recombinant Human GM-CSF on Circulating Erythroid Progenitors Using an Assay Involving the Delayed Addition of Erythropoietin

By Robert E. Donahue, Stephen G. Emerson, Elizabeth A. Wang, Gordon G. Wong, Steven C. Clark, and David G. Nathan

We demonstrate through the use of an in vitro assay involving the delayed addition of erythropoietin that human recombinant GM-CSF, cloned from a mature T cell line, Mo, clearly has burst-promoting activity (BPA) on peripheral blood erythroid progenitors at picomolar concentrations. Delay for up to 72 hours of the addition of erythropoietin to semi-solid methylcellulose cultures of concentrated peripheral blood progenitors minimizes or eliminates BPA-independent erythroid colony formation with little loss of BPA-dependent erythroid colony formation. This assay will prove useful in accurately detecting sources of BPA.

© 1985 by Grune & Stratton, Inc.

ISCOVE PROPOSED in an early study that a single factor could be involved in stimulating the proliferation of early murine hematopoietic progenitors to give rise to multiple cell lineages. One such factor with a wide spectrum of activities, murine interleukin-3 (IL-3), has since been purified and cloned. No human DNA sequence homologous to IL-3 has, however, been reported to date. With the demonstration by Metcalf and his coworkers that purified murine GM-CSF could promote up to five divisions of the early progenitors that give rise to erythroid, eosinophilic, and megakaryocytic colonies, we decided to determine whether or not the recently cloned human GM-CSF could also stimulate the proliferation of circulating erythroid progenitors. Our previous assays of conditioned media for the presence of BPA have been weakened by a relatively high number of BPA-independent BFU-E derived colonies that appear when erythropoietin is added immediately to in vitro cultures. In the past it has been demonstrated that delay of the addition of erythropoietin to cultures reduces the survival of mature erythroid progenitors and encourages the identity of CFU-GEMM derived colonies. Recently a two stage cell culture assay was described using delayed addition of erythropoietin to detect human BPA. Here we report that delayed addition of erythropoietin to methylcellulose cultures of concentrated peripheral blood progenitors improves discrimination between conditioned medium-containing BPA and conditioned medium that does not and demonstrate as well that recombinant GM-CSF has burst-promoting activity on circulating peripheral blood erythroid progenitors.

MATERIALS AND METHODS

Peripheral blood was obtained from normal volunteers and resuspended 1:1 (v:v) in Iscove's modified Dulbecco's medium (IMDM) supplemented with 20% fetal calf serum (FCS). The mononuclear cell layer was collected following density centrifugation at 20 °C using a Ficoll-Paque (Pharmacia, Piscataway, NJ) gradient (specific gravity 1.077). The mononuclear cells were washed three times with IMDM + 20% FCS and resuspended at a concentration of 5 x 10⁶ cells/mL. These mononuclear cells were then depleted of adherent cells by incubating them on 100 × 15 mm Lux tissue culture dishes (Miles Laboratories, Inc, Naperville, Ill) pretreated with 1 mg/mL rabbit anti-mouse IgG + IgA + IgM (H&L) (Zymed Laboratories, Inc, San Francisco, Calif) for one hour at 4 °C. Indirect immunofluorescence demonstrated that 4% of the nonadherent cells (routinely 98% viable by trypan blue exclusion) expressed Leu 1, 1% Leu 5, 5% Leu M1, and 4% Leu M2. The nonadherent cells were gently collected and resuspended at a concentration of 5 x 10⁶ cells/mL. The yeast-derived recombinant GM-CSF was isolated from the supernatant obtained from cultures of yeast engineered to secrete recombinant GM-CSF. It was kindly supplied to us by Dr J. Gasson and Dr D. Golde (University of California, Los Angeles). Recombinant human GM-CSF was cloned from the Mo cell line, and purified from transfected COS-1 cells, as described elsewhere. The same GM-CSF was expressed in E coli and purified by standard methods to be published elsewhere. The yeast-derived recombinant GM-CSF was isolated from the supernatant obtained from cultures of yeast engineered to secrete the hematopoietin directly into the medium. This protein was...
RESULTS

Both Mo-13 and MLA-144-1-conditioned medium are known to be potent sources of burst-promoting activity (BPA), however, even in the absence of a source of BPA, there is a relatively high level of BFU-E-derived colony formation when erythropoietin is added immediately to the cultures. By delaying the addition of erythropoietin up to 72 hours, there is a decline in BPA-independent BFU-E-derived colony formation without a loss of BPA-dependent colonies (Fig 1). By delaying the addition of erythropoietin past three days, however, there is a loss of detectable erythroid colonies. Thus, at a cell concentration of 5 x 10^5/mL, a three-day delay of the addition of erythropoietin appears optimal in limiting the number of BPA-independent BFU-E-derived colonies without significantly reducing the total number of erythroid progenitors.

Using this delayed erythropoietin assay, purified recombinant GM-CSF derived from a variety of expression systems was tested for burst-promoting activity. Figure 2 demonstrates that recombinant human GM-CSF had demonstrable burst-promoting activity while media alone, and conditioned media from mock transfected COS-1, yeast, and E coli did not. Both the COS-1 (~50 μg/mL) and yeast (~100 μg/mL) derived recombinant GM-CSFs continued to be active at a 1:10^5 dilution, equivalent to a protein concentration of 20 and 40 pmol/L, respectively. The E coli GM-CSF (~50 μg/mL) was active at a 1:10^5 dilution, equivalent to a protein concentration of 35 nmol/L. Both human urinary and recombinant erythropoietin (data not shown) were equally effective.

DISCUSSION

An assay based upon the delayed addition of erythropoietin that minimizes or eliminates BPA-independent erythroid colony formation has been presented. Using this assay we demonstrate that recombinant human GM-CSF has significant burst-promoting activity on circulating human erythroid progenitors, and that this activity is present at picomolar concentrations of the hematopoietin. It was interesting to note that even the unglycosylated recombinant human GM-CSF derived from E coli continues to have burst-promoting activity. These findings suggest that besides having the capability of functionally activating granulocytes14,15 and stimulating the proliferation and differentiation of granulocyte/macrophage progenitors,14 recombinant GM-CSF is also capable of stimulating the formation of erythroid colonies in vitro.

Figure 3 is an interpretation of the assay in relation to the capacity of erythroid progenitors to proliferate and differentiate in the presence or absence of BPA and erythropoietin. With the immediate addition of erythropoietin to the methylcellulose cultures, mature progenitors that require only erythropoietin for terminal differentiation are capable of proliferating and terminally differentiating to form BPA-independent BFU-E. Delay of the addition of erythropoietin to the cultures for three days inhibits the survival or function
REFERENCES

BPA ACTIVITY OF HUMAN GM-CSF

of these erythropoietin-dependent progenitors. On the other hand, if a source of BPA is present, nearly all of these BFU-E remain capable of proliferation. Following the delayed addition of erythropoietin they terminally differentiate into erythroid colonies. Thus the signal to noise ratio increases when the addition of erythropoietin is delayed.

This assay which limits BPA-independent growth is useful as a sensitive means of screening proteins for burst-promoting activity. In the present context, we have demonstrated that human recombinant GM-CSF stimulates not only the proliferation and differentiation of granulocyte/macrophage progenitors, but also allows the early erythroid progenitor to survive, grow, and eventually differentiate with the delayed addition of erythropoietin. The wide spectrum of actions of this glycoprotein and the implications of these functions can now be explored.

ACKNOWLEDGMENT

The authors thank Ms. J. Witek-Gianotti and Ms. D.P. Luxenberg for their excellent technical assistance; Drs. Paul Schendel, John McCoy, and Jasbir Seehra for supplying us with recombinant human GM-CSF expressed by an engineered strain of E. coli; Drs. Dave Rogers, Katherine Turner, and Karl Normington for supplying us with recombinant human GM-CSF expressed by an engineered strain of yeast cells; and Drs. Robert Kamen and Colin Sieff for their helpful comments.

REFERENCES

1. Iscove NN: The role of erythropoietin in regulation of population size and cell cycling on early and late erythroid precursors in mouse bone marrow. Cell Tissue Kinet 10:323, 1977
7. Linch DC, Donahue RE: Production of human active BPA from TCGF independent T cell lines that do not secrete HTLV: Proof of direct action of MLA-144 derived BPA using purified BFU-E. Br J Haematol (in press)
13. Golde DW, Bersch N, Quan SG, Lusis AJ: Production of erythroid-potentiating activity by a human T-lymphoblast cell line. Proc Natl Acad Sci 77:593, 1980
Demonstration of burst-promoting activity of recombinant human GM-CSF on circulating erythroid progenitors using an assay involving the delayed addition of erythropoietin

RE Donahue, SG Emerson, EA Wang, GG Wong, SC Clark and DG Nathan