Differential Interleukin-1 Elaboration by Density-Defined Human Monocyte Subpopulations

By Jack A. Elias, Paul Chien, Kelvin M. Gustilo, and Alan D. Schreiber

Interleukin-1 (IL-1) is an important immunoregulatory peptide produced by monocytes and macrophages. Because mononuclear phagocytes are morphologically and functionally heterogeneous, we examined whether they differ in their ability to elaborate IL-1. We used discontinuous Percoll gradients to obtain five density-defined human blood monocyte subpopulations. Unfractionated monocytes and their subsets were compared for their ability to stimulate thymocyte proliferation. Supernatants obtained from the denser monocytes consistently contained more IL-1 activity than did supernatants from the less dense cells. This difference in IL-1 activity was the result of differences in IL-1 elaboration, not the selective production of an inhibitor of IL-1–induced thymocyte proliferation. These data demonstrate that density-defined human monocyte subpopulations differ in their capacity to elaborate IL-1.

INTERLEUKIN-1 (IL-1) is an important immunoregulatory monokine. Mononuclear phagocyte elaboration of IL-1 is important in T and B lymphocyte differentiation and proliferation, lymphokine elaboration, and antibody production. In addition, IL-1 can stimulate hypocalamic cells to cause fever, hepatocytes to increase their elaboration of acute phase proteins, and fibroblasts to alter their growth, prostaglandin synthesis, and collagenase production.

Mononuclear phagocytes are morphologically and functionally heterogeneous. We have previously observed that density-defined human monocyte subpopulations differ in their Fc (IgG) and C3 receptor activity and in their capacity to support pokeweed mitogen-induced B cell differentiation. In addition, density-defined human monocyte subpopulations differ in their ability to elaborate colony-stimulating activity and prostaglandins. These findings led us to speculate that density-defined monocytes might differ in their ability to elaborate IL-1. To test this hypothesis, human monocytes were separated into five density-defined subpopulations using discontinuous gradients of Percoll (Pharmacia, Piscataway, NJ). The IL-1 activity of supernatants obtained from unfractionated monocytes and these monocyte subpopulations were then compared. The data indicate that density-defined monocytes differ in their ability to elaborate IL-1, with denser cells producing more IL-1 than less dense cells.

MATERIALS AND METHODS

Monocyte preparation. Monocytes were isolated as previously described. Peripheral blood mononuclear cells were obtained from normal volunteers by Ficoll-Hypaque centrifugation (SG 1.077). The cells were then adhered to plastic in Dulbecco’s modified Eagle’s medium supplemented with nonessential amino acids, penicillin, streptomycin, and 10% heat-inactivated fetal calf serum (FCS) (GIBCO, Grand Island, NY) (complete media). The flasks used in these studies were pretreated with FCS as previously described. After incubation for one hour at 37 °C in 5% CO2 and air, the flasks were washed vigorously, and the nonadherent cells were discarded. The adherent cells were then mechanically detached and washed thoroughly. The resultant cell suspension was ≥95% monocytes as assessed by light microscopy after staining with modified Giemsa (Diff Quik, Harleco, Philadelphia) and nonspecific esterase stains.

Monocyte subpopulation preparation. The monocytes were fractionated into five density-defined subpopulations, using discontinuous Percoll (Pharmacia, Uppsala, Sweden) gradients as previously described. Monocytes (2 × 10^7) were layered onto a 10-mL gradient containing 2 mL each of Percoll, SG 1.045, 1.050, 1.055, 1.060, and 1.065. The gradients were then centrifuged in a Sorval RT-6000 (DuPont Institute, Wilmington, Del) for ten minutes at room temperature (450 g). The cells that localized at each gradient interface were harvested, washed, and resuspended. Viability was >90% by trypan blue dye exclusion, and recovery varied from 60% to 80%. The different monocyte subpopulations were designated as numbers 1 through 5. The cells in fraction 1 were the least dense (SG ≤ 1.045), and the cells in fraction 5 were the most dense (SG between 1.060 and 1.065).

Supernatant preparation. Unfractionated and fractionated monocytes (5 × 10^7/mL) were suspended in round-bottom microtiter wells (Limbro, Hamden, Conn) in complete medium in the presence or absence of 50 μg/mL of lipopolysaccharide (LPS) (Difco, Detroit). After incubation for 24 hours at 37 °C in 5% CO2 and air, the individual wells were pooled and the cell-free supernatants were obtained after centrifugation (400 g for 15 minutes).

Assay of IL-1 activity. The IL-1 activity of our supernatants was assessed by standard mouse thymocyte assay as described by Mize.

Thymocytes were obtained from three- to six-week-old C3H/HeJ mice and incubated with dilutions of control medium or test supernatants (1.5 × 10^6 thymocytes per well). Proliferation was assessed with or without a suboptimal dose (10 μg/mL) of phytohemagglutinin (PHA) (Difco). The cultures were then incubated at 37 °C in 5% CO2 and air for 72 hours. Sixteen hours before the end of the incubation period, thymocyte proliferation was assessed by labeling with 0.5 μCi 3HTdr (5 Ci/mmol, Amersham, Arlington Heights, Ill). At the end of the incubation period, the cells were harvested, and cellular 3HTdr incorporation was assessed by scintillation counting.

Assay of IL-2 activity. To determine whether our supernatants contained IL-2, we assayed for its presence by using techniques previously described. In brief, blood mononuclear cells were cultured with PHA for four days and then in the presence of IL-2 containing supernatants for an additional ten days. After this ten-day period, these cells (designated continuous T cells [CTC]) have an absolute requirement for IL-2 for continued proliferation.

From the Cardiovascular-Pulmonary Division, and Hematology-Oncology Section, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia.

Supported in part by National Heart, Lung and Blood Institute grants No. 1-K08-HL-0164 (J.A.E.) and 1-R01-HL-27068 (A.D.S.), and by the American Lung Association, the Edward Livingston Trudeau Scholar Award, and the Leonard Dalesmer Award (J.A.E.).

Submitted Sept 24, 1984; accepted Jan 28, 1985.

Address reprint requests to Dr Jack A. Elias, Room 810 East Gates Bldg, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104.

© 1985 by Grune & Stratton, Inc.

0006-4971/85/02-0009$03.00/0

© 1985 by Grune & Stratton, Inc.
VARIABLE MONOCYTE INTERLEUKIN-1 RELEASE

The ability of monocyte supernatants to maintain the proliferation of these cells was compared with that of supernatants containing IL-2.

Statistics. Intraexperimental differences between the mean values for a set of observations were assessed by the use of the standard Student's t test. Comparisons between the IL-1 activities in supernatants from the different monocyte populations were performed with nonparametric analysis (Friedman Free Rank Order).20

RESULTS

Unfractionated blood monocytes. Supernatants from unstimulated blood monocytes contained either trace or undetectable amounts of IL-1 activity. In contrast, supernatants from LPS-stimulated blood monocytes contained large amounts of IL-1 activity, briskly stimulating thymocyte proliferation (Table 1). The effect was dose-dependent, with peak thymocyte proliferation occurring in wells containing a 1:4 dilution of supernatant. The majority of this stimulatory activity fractionated at a molecular weight between 14,000 and 16,000 daltons, using gel filtration techniques previously described.23 In addition, these supernatants consistently contained no IL-2 activity when tested for their ability to support the proliferation of continuous T cell lines.

Percoll-fractionated cells. Fractionation using a discontinuous Percoll gradient resulted in five monocyte subpopulations. Recovered cells were >98% monocytes and were >90% viable, as were the unfractionated cells. Supernatants from unstimulated monocytes from all fractions contained trace or no IL-1 activity. Supernatants from LPS-stimulated monocytes from all fractions were capable of stimulating thymocyte proliferation. However, the IL-1 activity of supernatants from the density-defined monocyte subpopulations differed significantly. Supernatants from the dense monocytes (fractions 3, 4, and 5) were consistently more potent stimulators of thymocyte proliferation than supernatants from the less dense cells (fractions 1 and 2) (Table 1, Fig 1). Overall, supernatants from fraction 4 cells were the most potent, frequently causing thymocytes to incorporate more 3H TdR than did supernatants from the unfractionated cells. Lesser amounts of IL-1 activity were found in supernatants from cells from fractions 3 and 5. In contrast, supernatants from monocytes in fractions 1 and 2 contained the least IL-1 activity (Table 1, Fig 1). These supernatants frequently caused less thymocyte proliferation than supernatants from the unfractionated cells (Fig 1). These differences in IL-1 activity were seen at all dilutions of supernatant tested (1:4 to 1:16). In addition, dialysis against complete medium using a 12,000 dalton molecular weight cutoff membrane did not alter the pattern of IL-1 activity in the supernatants from the density-defined monocyte subpopulations. The differences in IL-1 activity in supernatants from fraction 4 cells and the activity in supernatants from fraction 1 and 2 monocytes were significant at the P < .001 level using nonparametric analysis.

The noted differences in IL-1 activity could result from variation in the rate of synthesis of IL-1 or from the selective elaboration of IL-1 by the less dense monocytes of a factor(s) that interferes with IL-1-induced thymocyte proliferation. To see if such an inhibitor was being selectively elaborated, mixing experiments were performed in which thymocytes were incubated with IL-1 containing control blood monocyte supernatants with and without the addition of dilutions of supernatants from all density-defined monocyte subpopulations. Supernatants from fraction 1 and fraction 4 cells had similar effects on thymocyte proliferation in this assay (data not shown). Thus, the differences in IL-1 activity that were noted were not caused by the selective elaboration of an inhibitor of IL-1-induced thymocyte proliferation.

Monocyte fractions 1 and 2 contained 5.3% and 5.2%, respectively, of all recovered cells. In contrast, fractions 3, 4, and 5 contained 9.9%, 36.8%, and 42.5%, respectively, of all recovered cells (Fig 2). Thus, 89.2% of all recovered monocytes were in fractions 3 through 5, the monocytes that were

<table>
<thead>
<tr>
<th>Table 1. Interleukin-1 Activity of Unfractionated and Density-Defined Monocyte Subpopulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment No.</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Representative experiments (n = 12) illustrating the effect on thymocyte Incorporation of a 1:8 dilution of supernatants from LPS-stimulated unfractionated monocytes and density-defined (Percoll) monocyte subpopulations. Thymocytes cultured without monocyte supernatants consistently incorporated less than 500 cpm. All cultures contained 10 μg/mL of PHA.

Fig 1. Cumulative illustration of the effect on thymocyte Incorporation of a 1:8 dilution of supernatants from LPS-stimulated unfractionated and fractionated blood monocytes. The Incorporation of lymphocytes incorporated by thymocytes in supernatants from unfractionated cells. The IL-1 activity in the monocyte supernatants was assessed in the presence of PHA. Each value represents the mean ± SE of eight experiments in which all monocyte subpopulations were studied.
Efficient producers of IL-1. Conversely, 10.8% of all recovered cells were in fractions 1 and 2, monocytes that were inefficient producers of IL-1. These findings suggest that the majority of circulating blood monocytes are capable of elaborating significant amounts of IL-1 on stimulation.

DISCUSSION

In an effort to further understand the importance of monocyte and macrophage heterogeneity in the immune response, we characterized the IL-1 activity of supernatants obtained from density-defined monocyte subpopulations. Our data indicate that supernatants from denser monocytes stimulate thymocyte proliferation to a greater degree than do supernatants from less dense cells. In addition, we demonstrate that the differences in IL-1 activity are the result of differences in IL-1 elaboration rather than the selective production of an inhibitor of IL-1–induced thymocyte proliferation. The major thymocyte-stimulating activity in our supernatants had an apparent molecular weight between 14,000 and 16,000 daltons. In addition, our supernatants did not support the continued proliferation of IL-2–dependent continuous T cell lines. Thus, we feel that the activity being assayed is truly that of IL-1. However, the small number of cells available from a number of the density-defined subpopulations precludes further characterization at present.

Separation of monocytes on the basis of density has previously proven useful for investigating differences among mononuclear phagocytes. Density-defined human monocytes have been shown to differ in their esterase activity, capacity to yield colony-stimulating activity, prostaglandin E2 production, Fc(IgG) and C3 receptor activity, and in their ability to support pokeweed mitogen-induced B cell differentiation. Our studies show that density-defined human monocytes also differ in their ability to elaborate IL-1. This finding in humans is in accord with the prior demonstration by Shellito and Kaltreider that density-defined rat alveolar macrophage subpopulations differ in their ability to elaborate IL-1 after stimulation with phorbol myristic acetate. In addition, the finding that monocytes of greater density are more efficient producers of IL-1 than are monocytes of lesser density concurs with prior studies in humans and animals, in whom more dense mononuclear phagocytes exhibited enhanced functional activity. Shellito and Kaltreider observed that denser rat alveolar macrophages were more potent producers of IL-1. We previously demonstrated that denser human monocytes express more Fc (IgG) and C3 receptor activity and are enriched in their capacity to support pokeweed mitogen-induced B cell differentiation. Zwilling et al showed that denser hamster alveolar macrophages were more efficient killers of tumor cells after exposure to stimulated lymphocyte supernatants, and Holian et al showed that denser guinea pig alveolar macrophages exhibited increased stimulated migration, superoxide anion release, and pinocytosis. In addition, Serio et al showed that denser mouse peritoneal macrophages were more efficient mediators of antibody-dependent phagocytosis and had enhanced Fc (IgG) receptor activity, whereas Murphy et al showed that denser rabbit alveolar macrophages augmented antigen-stimulated lymphocyte proliferation to a greater degree than did less dense cells.

It is not clear if the differences in IL-1 elaboration by fractionated monocytes reflect different capabilities of cells derived from different precursor pools or different capacities of cells derived from the same precursors at different stages of maturation or activation. In an attempt to gather information in this regard, we characterized the ability of monocytes to elaborate IL-1 as they mature in vitro. We noted that after 48 to 72 hours in culture, monocytes have a diminished capacity to elaborate IL-1 in response to LPS (J.A.E. and A.D.S., unpublished observation, April 1985). This observation is in accord with reports from others. Thus, a monocyte’s capacity to elaborate IL-1 can be altered by time and/or environment and is not fixed on the basis of the precursor cell of origin. This observation is in accord with the hypothesis that the differential IL-1 production described in this report is a function of cell maturation or activation. However, further experimentation will be required to definitively prove this hypothesis.

Our data demonstrate that density-defined monocyte subpopulations differ in their ability to elaborate IL-1. If density-defined human tissue macrophages also differ in their ability to elaborate IL-1, this finding has a number of important potential implications. IL-1 can have important effects on T and B lymphocyte proliferation and on differentiation, lymphokine elaboration, and antibody production. IL-1 may also affect hypothalamic cells, causing fever; hepatocytes, increasing the elaboration of acute phase reactants; and fibroblasts, altering their growth and increasing their prostaglandin and collagenase production. Thus, the relative distribution of mononuclear phagocytes may affect the amount of IL-1 elaborated by a mononuclear phagocyte population and thus the intensity of local inflammatory and fibrotic processes.

In summary, we have shown that density-defined human blood monocyte subpopulations differ in their ability to elaborate IL-1. We have also shown that the majority of circulating blood monocytes are efficient producers of IL-1. These findings further support the contention that human mononuclear phagocytes are a functionally heterogeneous cell population.
REFERENCES

Differential interleukin-1 elaboration by density-defined human monocyte subpopulations

JA Elias, P Chien, KM Gustilo and AD Schreiber