CONCISE REPORT

Stimulation of Prostacyclin Synthesis in Vascular Cells by Mononuclear Cell Products

By Elisabetta Dejana, Ferruccio Breviario, Giovanna Balconi, Vincenzo Rossi, Giuseppe Remuzzi, Giovanni de Gaetano, and Alberto Mantovani

Supernatants were obtained from human peripheral blood mononuclear cells stimulated with phytohemagglutinin or in a mixed lymphocyte reaction. The effect of mononuclear cell products on vascular prostacyclin (PGI₂) production was measured using cultured rat aortic smooth muscle cells (SMC) or aortic rings. PGI₂ was measured by radioimmunoassay of its metabolite, 6-keto-PGF₁α. Supernatants containing mononuclear cell products induced PGI₂ production in vascular tissue. Supernatant-induced PGI₂ production of SMC was relatively slow, requiring more than six hours of incubation with supernatants, and was completely prevented by aspirin, a cyclooxygenase inhibitor. The regulation of arachidonic acid metabolism by products of stimulated mononuclear cells, which is critical to the physiology and pathology of blood vessels, may be an important aspect of the interaction between immunocompetent cells and vascular tissue.

THE INFLUENCE OF CELLS of the immune system on vascular cells has received only limited attention (briefly reviewed by Baldwin). At sites of cell-mediated reactions such as delayed hypersensitivity or graft-vs-host disease, proliferation of capillary endothelial cells has been documented. In vitro products of lymphocytes or macrophages regulate various functions of vascular cells, such as proliferation, migration, production of colony-stimulating factors (CSF), and expression of class II histocompatibility (Ia) antigens. Prostacyclin is the major product of arachidonic acid (AA) metabolism in vascular cells and may play a key role in the physiology and pathology of blood vessels.

The present investigation was designed to elucidate whether or not products of blood mononuclear cells influence the AA metabolism of the vessel wall. We found that supernatants of stimulated human peripheral blood mononuclear cells induced prostacyclin (PGI₂) synthesis in vascular cells and tissues.

MATERIALS AND METHODS

Supernatants

Supernatants of stimulated mononuclear cells were prepared essentially as previously described. Briefly, mononuclear cells were separated from the heparinized venous blood of healthy donors by sedimentation on Ficoll-Hypaque. Mononuclear cells were washed and resuspended in RPMI 1640 medium with 10% fetal bovine serum (GIBCO-Biocult, Glasgow, Scotland) at a concentration of 2 to 5 x 10⁶/mL; 10 mL of the cell suspension was cultured in plastic tubes (2070, Falcon, Oxnard, Calif) with 10 μg/mL phytohemagglutinin (PHA; HA17, Wellcome Research Laboratories, Beckenham, England). After 20 hours at 37 °C in air with 5% CO₂, cells were washed three times with 50 mL of culture medium, resuspended in the original volume, and further cultured for 24 hours at 37 °C. Control cultures consisted of mononuclear cells cultivated without PHA. In some experiments (see Results), PHA was added to the control medium and did not affect PGI₂ production.

One supernatant was also generated by a mixed lymphocyte reaction (MLR). Mononuclear cells from two histoincompatible donors (2 x 10⁶/mL) were cultured for three days at 37 °C. The control medium consisted of mononuclear cells of each of the two donors cultured alone. Before assessing their effect on the vessel walls, the capacity of supernatant fluid from stimulated mononuclear cells to augment the tumoricidal capacity of human monocytes was tested, as previously described.

Isolation and Culture of Rat Aortic Smooth Muscle Cells

Rat smooth muscle cells were obtained from thoracic aortas according to the method of Travo et al. The cells were grown in Eagle's minimal essential medium on Hanks' balanced salt solution buffered with HEPES (20 mmol/L), supplemented with 10% bovine serum (5% newborn, 5% fetal) and with the addition of penicillin (100 U/mL) and streptomycin (100 μg/mL) (Flow Laboratories, Inc, Rockville, UK). Rat smooth muscle cells were subcultured in a ratio of 1:3 by brief exposure to a mixture of 0.25% to 0.125% trypsin and 0.02% EDTA in phosphate-buffered saline (PBS). The experiments reported here were carried out with cells between the sixth and 22nd passages at confluence. Medium was removed the day before the experiment. Previous experiments using thin-layer chromatography and mass spectrometry showed that these cells produce PGI₂ as the main AA metabolite and that the AA metabolic profile did not change during cell doublings.

For thin-layer chromatography, smooth muscle cells at confluence were labeled with 0.2 μCi/2 x 10⁶ cells ¹⁴C-arachidonic acid (59 mCi/mmol; Amersham International Ltd, Buckinghamshire, England) for four hours at 37 °C. Approximately 50% of the total radioactivity added was incorporated. After labeling, the cells were repeatedly washed, then incubated for 12 hours in the culture medium. At the end of incubation, the medium was extracted and...
arachidonic acid metabolites were separated by thin-layer chromatography and counted, as previously described. This procedure was applied to the cells at the 6th, 10th, 12th, 18th, 20th, and 22nd passages.

Arachidonic acid metabolites were analyzed by mass spectrometry on confluent monolayers of SMC incubated with 25 μmol/L AA for 30 minutes. After incubation, the medium was extracted and processed for mass-spectrometry analysis of prostaglandins and thromboxane, as described previously. This procedure was applied to cells at the sixth and 22nd passages.

Smooth Muscle Cell Stimulation With Supernatants

After removing the growth medium, the monolayers of intact confluent smooth muscle cells (2.5 to 3.5 x 10⁶ cells in a 2-mm² culture well) were washed once with 2 mL of PBS, after which 300 μL of culture medium alone, or supernatants of stimulated mononuclear cells, or conditioned medium at the required concentrations, were layered onto the cells. In some experiments, aspirin (Flectadol, Maggiono, Italy) was added to the cells at a concentration of 500 μmol/L for the entire incubation period with mononuclear cell products.

After selected incubation periods at 37 °C, the supernatants were removed from the culture well and stored at −20 °C until tested for 6-keto-PGF₁α, which was measured by a radioimmunoassay as described. The background of immunoreactive 6-keto-PGF₁α in the supernatants of stimulated mononuclear cells and conditioned medium preparations tested before addition to the smooth muscle cells ranged from 0.38 to 1.96 pmol/100 μL and 0.34 to 1.90 pmol/100 μL, respectively. Background values of 6-keto-PGF₁α were measured for each supernatant preparation and subtracted from the total 6-keto-PGF₁α value measured after incubation of the cells with supernatants.

“Exhausted” Rat Aortic Rings

Rat aortic rings were prepared and “exhausted” as described previously. After this procedure, the vessels produced undetectable antiaggregating activity and only negligible amounts of immunoreactive 6-keto-PGF₁α when incubated for ten minutes in 1 mL 0.05 mol/L TRIS buffer (pH 9.0) at room temperature. The “exhausted” rings were incubated at 37 °C with 400 μL conditioned medium or the supernatants of stimulated mononuclear cells. After 30 minutes, PGI₂ activity was checked biologically as described. The capacity of test samples to stimulate PGI₂ activity was expressed as a percentage of the activity of appropriate control vessels tested simultaneously.

PGI₂ activity was also measured by radioimmunoassay of 6-keto-PGF₁α.

RESULTS

Figure 1 shows the results of a typical experiment in which vascular smooth muscle cells were exposed to supernatants of stimulated mononuclear cells for various times in culture, and PGI₂ production was measured as immunoreactive 6-keto-PGF₁α, its stable metabolite. Control conditioned medium of unstimulated mononuclear cells did not induce PGI₂ formation in supernatants of smooth muscle cells under these conditions, whereas supernatants of PHA-stimulated mononuclear cells induced appreciable PGI₂ production. Some effect of mononuclear cell supernatants was already apparent after 12 hours of incubation (0.87 pmol/10⁶ cells v 0.15 pmol/10⁶ cells for conditioned medium) and was maximal after 24 hours (3.49 pmol/10⁶ cells). Because further incubation (up to 48 hours) did not consistently augment the levels of 6-keto-PGF₁α (data not shown), the 24-hour exposure time of smooth muscle cells to supernatants was used routinely.

The supernatant preparations used in most experiments were obtained by pulsing mononuclear cells with PHA for 24 hours, followed by extensive washing (see Materials and Methods). PHA alone did not induce PGI₂ synthesis in vascular smooth muscle cells (Fig 1). However, a supernatant preparation obtained by mixed lymphocyte reaction did induce PGI₂ synthesis, thus further excluding any significant role of possible residual contamination of supernatants with trace amounts of lectin.

Exposure of smooth muscle cells to aspirin during incubation completely prevented the rise in 6-keto-PGF₁α levels induced by mononuclear cell products, thus further indicating that the radioimmunoassay was measuring an AA metabolite of the cyclooxygenase pathway.

The results shown in Fig 1 were obtained at a 30% supernatant concentration in the culture medium. Different supernatants varied considerably in potency (ie, minimal active dilution), with activity usually first detectable at a 5% to 15% concentration (Fig 2). For experiments on smooth muscle cells, four preparations...
were tested; all induced PGI₂ production, with a mean level of 2.25 ± 0.5 (range 1.53 to 3.49) pmol/10⁵ cells of 6-keto-PGF₁α, at a 30% concentration (24-hour incubation) compared to 0.34 ± 0.15 (range, 0.24 to 0.5) for control conditioned media.

In some experiments, the smooth muscle cells were stimulated with arachidonate (25 μmol/L) 24 hours after incubation with the 30% stimulated mononuclear cell supernatant. Mean 6-keto-PGF₁α production was 8.6 ± 0.7 pmol/10⁵ cells for the cells incubated with supernatants of stimulated mononuclear cells and 7.6 ± 0.8 pmol/10⁵ cells for the cells incubated with conditioned medium. These values were not statistically different by the Student’s t test.

The results indicate that supernatant fluid from stimulated mononuclear cells contains products capable of inducing PGI₂ production in cultured smooth muscle cells. It was of interest to see whether or not such effects were also observed using whole vessel walls. As shown in Table 1, stimulated mononuclear cells produced substances that consistently stimulated PGI₂ production from “exhausted” rat aortic rings.

DISCUSSION

The results reported here show that supernatants of stimulated mononuclear cell cultures induce PGI₂ synthesis in vascular tissues. The effect of supernatants was observed on whole aortic tissue and cultured smooth muscle cells and was detected by two different PGI₂ assay methods. Induction of PGI₂ production in smooth muscle cells by mononuclear cell supernatants was dependent on the integrity of the cyclooxygenase pathway of arachidonic metabolism, as indicated by the fact that aspirin completely blocked PGI₂ production.

The induction of PGI₂ synthesis by mononuclear cell products required a long interaction with smooth muscle cells (> six hours). In contrast, induction of PGI₂ synthesis in endothelial cells or smooth muscle cells, by AA, thrombin, or the ionophore A23187 occurs rapidly, requiring only a few minutes. However, stimulation of fibroblast PGE₂ synthesis by lymphocyte-monocyte products requires at least 12 hours to be apparent.

Products of lymphocytes or monocytes reportedly affect various functions of vessel wall cells (endothelial and/or smooth muscle cells), such as proliferative capacity, migration, and production of colony-stimulating factors. Except for interferon (IFN), which has been shown to modulate the expression of class II histocompatibility antigens in endothelial cells, unlike the nature of the mediator(s) involved in these effects has not been defined. Identification of the product of stimulated mononuclear cells that induces PGI₂ synthesis in vascular tissue was beyond the scope of the present investigation, which was aimed only at assessing whether or not an unfractionated stimulated mononuclear cell supernatant affected PGI₂ synthesis—a critical aspect of the physiology of the vessel wall. Experiments designed to elucidate the nature of the product(s) and the producing cell(s) are now under way. Preliminary data suggest that monocytes are required for the generation of active supernatants. Gel filtration experiments on Sephacryl S200 suggest a molecular weight range of 15,000 to 40,000. For instance, in one experiment, pooled Sephacryl S200 fractions in the 15,000 to 40,000 range caused a fivefold stimulation of PGI₂ synthesis at 24 hours, while all other fractions were completely inactive with respect to control medium. Various species of human IFN (recombinant α-type A and A/D; natural β; recombinant γ) have so far shown no effect on PGI₂ synthesis, although a preliminary communication suggests that IFN does modulate PGI₂ production under different experimental conditions. A partially purified preparation containing interleukin 1 (IL 1) proved extremely effective.

Whatever the nature of the product(s) of stimulated mononuclear cells, the results reported here show that mediators of cells of the immune system can affect PGI₂ secretion by vascular tissue. This arachidonate
metabolite plays a major role in the regulation of important biologic functions, such as platelet aggregation and vascular tone. It is tempting to speculate, for instance, that PGI₂ secretion induced by mononuclear cell products might contribute to vasodilation at sites of delayed hypersensitivity reactions.

ACKNOWLEDGMENT
Judith Baggott, Ivana Garimoldi, Vincenzo and Felice de Ceglie, and Vanna Pistotti helped to prepare the manuscript. We are grateful to Dr Chiara Chiabrando and Dr M. Novella Castagnoli for mass spectrometry analysis of prostaglandins. The antibody against 6-keto-PGF₁α was a kind gift of Dr M.J. Buchanan, McMaster University, Hamilton, Ontario, Canada.

REFERENCES
Stimulation of prostacyclin synthesis in vascular cells by mononuclear cell products

E Dejana, F Breviario, G Balconi, V Rossi, G Remuzzi, G de Gaetano and A Mantovani