Decreased 5'-Nucleotidase Activity in a T Lymphocyte Subpopulation From Patients With B Cell Chronic Lymphocytic Leukemia

By Robert Silber and Maryrose Conklyn

The activity of the ectoenzyme 5'-nucleotidase (5'N) was determined in the T lymphocyte subpopulations from patients with chronic lymphocytic leukemia (CLL). 5'N could be detected only in the T cells from patients whose B cells also had enzyme activity. The specific activity of CLI could be detected only in the T cells from patients whose B patients with chronic lymphocytic leukemia (CLI).

The immunodeficiency may be related to the neoplasms of normal T4 cells, which was 0.13 ± 0.08 μm/h/mg. The CLI T8 cells, however, had a significantly lower 5'N activity (0.17 ± 0.02 μm/h/mg) than normal T8 cells (0.41 ± 0.11 μm/h/mg) (P = .003). Normal null cells had very low activity, while much higher levels were found in the null cells of CLI patients whose B cells had activity. These findings document a difference in activity of an enzyme between the T8 cell population of patients with CLI and that of normal subjects.

MATERIALS AND METHODS

Mononuclear cells (lymphocytes and monocytes) were isolated from the heparinized blood of normal subjects and untreated patients with CLI using the Ficoll-Hypaque gradient method. Monoclonal antibodies were removed by adhesion to plastic culture dishes. Purity, monitored by cell sizing using a Coulter (Hialeah, Fla.) Counter Model ZAU equipped with a channelyzer, was greater than 95%.

Subpopulations were enriched by sheep erythrocyte rosetting techniques using trypsinized, antibody-coated erythrocytes in the presence of complement (EAC) for B cells and neuraminidase-treated erythrocytes (Ea) for T cells. The erythrocytes were removed by NH₄Cl lysis. Purity of the B cell and T cell preparations was determined by rosetting assays.

The T cell subsets were separated into their T4 and T8 subpopulations by the antibody-complement lysing technique using monoclonal antibodies, OKT4 and OKT8. The percentage of helper and suppressor cells was determined by the enzyme-linked immunoabsorbent assay using monoclonal antibodies and a peroxidase-linked anti-mouse IgG. Viability, measured by erythrosin B dye exclusion, was greater than 90% in all but one experiment, where it was 76%. In some experiments, nonviable cells were removed by Ficoll-Hypaque sedimentation, but because 5'N activity is not affected by cell viability, dead cells were not removed routinely.

Lymphocyte 5'N activity was determined by the release of Pi from AMP, as previously described. Control assays contained 100 μmol/L α,β-methylene adenosine 5'-diphosphate, a specific inhibitor of 5'N. Protein was determined by the method of Lowry et al. Although 5'N is usually diminished in CLI B lymphocytes, most of the patients chosen for this study had detectable activity in their B cells as well as in their T cell subpopulations, and by necessity, represent a selected population.

RESULTS AND DISCUSSION

The 5'N activities of the T and B cell subsets of normal and CLI lymphocytes are shown in Fig 1.
Following E\textsubscript{T}AC rosette purification, there was an eightfold increase in the percentage of B cells in normal preparations, while the CLL T cell percentage was increased sevenfold by E\textsubscript{N} rosette formation over that in unfractionated preparations. After E\textsubscript{T}AC and E\textsubscript{N} rosette sedimentation, the cells remaining in the interphase contained about 75% null cells in either normal or CLL preparations. The T4 and T8 subsets were enriched to about 80% purity in normal and 70% in CLL lymphocytes. The T4/T8 ratio of normal T cells was three times that of the corresponding T cells, but lower than the 5’N levels of the B cells. Contamination by B cells was probably not sufficient to account for the values obtained for two reasons: (1) residual B cells contributed less than 25% of the total 5’N activity in these cells, and (2) in one patient the null cells actually had a slightly higher 5’N activity than the B cells. It therefore appears that the high 5’N activities in these preparations were indeed null cells. All of the above relationships were the same when enzyme activity was expressed per cell as well as in terms of protein concentration.

T lymphocytes from patients with B cell CLL manifest two anomalies in 5’N activity: (1) the absence or reduction of enzyme activity in T cells from patients whose B cells also lack the enzyme,11 and (2) a decrease in 5’N activity in the T8 subpopulation from B cell CLL patients who have 5’N+ lymphocytes. Thompson et al2 have shown the presence of a 5’N+ subpopulation in T8 cells. Conceivably, this could be expanded in CLL.

The absence of 5’N in the T cells of 5’N− B-CLL implies that the expression of 5’N may be determined in early precursor cells common to the T and B cell lineage. The 5’N− CLL lymphocytes may be derived from precursor cells in which the ability to express 5’N is lost or repressed. The 5’N+ CLL lymphocytes would then be derived from a subpopulation that retained 5’N expression. The heterogeneity of 5’N in this disorder could then be accounted for within the framework of this concept.

REFERENCES

5'-NUCLEOTIDASE IN CLL T LYMPHOCYTES

2. Thompson LF, Saxon A, O'Connor RD, Fox RI: Ecto-5'-
nucleotidase activity in human T-cell subsets: Decreased numbers of
ecto-5'-nucleotidase positive cells in patients with both OKT4+ and
OKT8+ cells in patients with hypogammaglobulinemia. J Clin
Invest 71:892, 1983

3. Chen YH, Heller P: Lymphocyte surface immunoglobulin
density and immunoglobulin secretion in vitro in chronic lympho-

4. Lopes J, Zucker-Franklin D, Silber R: Heterogeneity of 5'-
nucleotidase activity in lymphocytes in chronic lymphocytic leuke-

5. Quagliata F, Faig D, Conklyn M, Silber R: Studies on the
lymphocyte 5'-nucleotidase in chronic lymphocytic leukemia, infec-
tious mononucleosis, normal subpopulations and phytohemagglu-
tinin stimulated cells. Cancer Res 34:3197, 1974

lymphocytes: 5'-nucleotidase positive and negative subpopulations. J
Clin Invest 56:1324, 1975

7. LaMantia K, Conklyn M, Quagliata F, Silber R: Lymphocyte
5'-nucleotidase: Absence of detectable protein in chronic lympho-

8. Platsoucas CD, Galinski M, Kempin S, Reich L, Clarkson B,
Good RA: Abnormal T-lymphocyte subpopulations in patient with
B-cell chronic lymphocytic leukemia: An analysis by monoclonal

9. Rambotti P, Davis S: Lactic dehydrogenase in normal and
leukemia lymphocyte subpopulations: Evidence for the presence of
abnormal T-cells and B-cells in chronic lymphocytic leukemia.
Blood 57:324, 1981

10. Starrk R, Liebes LF, Nevrla D, Conklyn M, Silber R: Decreased actin content of lymphocytes from patients with chronic

11. Han T, Ozer H, Henderson ES, Dadey B, Nussbaum-
Blumenson A, Barcos M: Defective immunoregulatory T-cell func-

12. Lauria F, Foa R, Mantovani V, Fierro MT, Catovsky D,
Taura S: T-cell functional abnormality in B-chronic lymphocytic
54:277, 1983

13. Boss GR, Thompson LF, Spiegelberg HL, Waldmann TA,
O'Connor RD, Hamburger RN, Seegmiller JE: Lymphocyte ecto-
5'-nucleotidase activity as a marker of B-cell maturation. Trans
Assoc Am Physician 92:309, 1979

15. Petty HR, Ware BR, Liebes LF, Pelle E, Silber R: Electro-
phoretic mobility distributions distinguish hairy cells from other
mononuclear blood cells and provide evidence for the heterogeneity

16. Broome JD, Zucker-Franklin D, Weiner MS, Bianco C,
Nussenzweig V: Lymphemic cells with membrane properties of thymus derived (T) lymphocytes in a case of Sezary's syndrome:
Morphology and immunologic studies. Clin Immunol Immunopathol
1:319, 1973

17. Bianco C, Patrick R, Nussenzweig V: A population of lymph-
cytes bearing a membrane receptor for antigen-antibody-comple-

18. Weiner MS, Bianco C, Nussenzweig V: Enhanced binding of
neuraminidase-treated sheep erythrocytes to human T-lymphocytes.
Blood 42:939, 1973

19. Ross D, Loos JA: Changes in the carbohydrate metabolism of
mitogenically stimulated human peripheral lymphocytes. I. Stimula-

20. Reinerer EL, Morimoto C, Fitzgerald KA, Hussey RE,
Daley JF, Schlossman SF: Heterogeneity of human T4+ inducer
T-cells defined by a monoclonal antibody that delineates two func-

by cell quantitation of lymphocyte surface membrane Ig in normal
and CLL lymphocytes and during ontogeny of mouse B-lymphocytes

22. Merchant DJ, Kahn RH, Murphy WH: Handbook of Cell
and Organ Culture. Minneapolis, Burgess, 1964, p 157

23. Edwards NL, Magilavry DB, Cassidy JT, Fox IH: Lymphocy-
te ecto-5'-nucleotidase deficiency in agammaglobulinemia. Science
201:628, 1978

24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein

25. Rowe M, DeGast CG, Platts-Mills TAE, Asherson GL,
Webster ADB, Johnston SM: 5'-Nucleotidase of B- and T-lympho-
cytes isolated from human peripheral blood. Clin Exp Immunol
36:97, 1979
Decreased 5'-nucleotidase activity in a T lymphocyte subpopulation from patients with B cell chronic lymphocytic leukemia

R Silber and M Conklyn