Inappropriately Low Red Cell 2,3-Diphosphoglycerate and p50 in Transfused \(\beta\)-Thalassemia

By Antonio Correra, Joseph H. Graziano, Carol Seaman, and Sergio Piomelli

The relationships among hemoglobin concentration (Hb), red cell 2,3-diphosphoglycerate (2,3-DPG), and p50 were studied in 20 chronically hypertransfused patients with thalassemia major. In the nontransfused control group, which included normal individuals as well as patients with sickle cell disease or iron deficiency anemia, the Hb correlated inversely with both 2,3-DPG concentration and p50, as is well established. In contrast, however, prior to transfusion, at the nadir of Hb, patients with thalassemia major had inappropriately low 2,3-DPG concentrations and p50s. These findings occurred in all patients, regardless of whether they had received packed, leukocyte-poor, or frozen-thawed red cells. The hypothesis that the time of packed red cells (2 patients), leukocyte-poor (7 patients), or frozen-thawed red cells (11 patients) at intervals of 3–4 wk. All blood units were collected in CPDA-1 and either administered or frozen within 5 days. Frozen units were then thawed and deglycerolized within 24 hr of transfusion. The patients’ mean pretransfusion Hb concentration was 10.6 g/dl, the mean Hbf concentration was 1.1%, and the mean reticulocyte count was 0.4%, indicating a low concentration of endogenous thalassemic cells in the circulation. Capillary pH, serum CO₂, base excess, and electrolytes were within normal limits.

Both red cell 2,3-DPG and p50 were measured on 1–5 occasions in each patient immediately prior to transfusion. Where multiple analyses were performed, the mean value has been used in data analysis. In addition, in three patients, 2,3-DPG and p50 were measured twice per week during the interval between transfusions. Red cell 2,3-DPG was measured by the technique of Keitt. The Hb–oxygen dissociation curve was determined with a HemoAnalyzer (TCS Medical Products, Philadelphia, PA), an instrument that utilizes 50 \(\mu\)l of blood under controlled conditions (pH 7.4, temperature 37°C). From this curve, the p50, i.e., the partial pressure of \(O_2\) (mm Hg) at which Hb is 50% saturated with \(O_2\), was calculated.

In an attempt to determine whether the duration of blood storage prior to transfusion influenced the 2,3-DPG and p50 findings, one 3-yr-old patient with thalassemia major was transfused 3 times with packed red cells that had been collected in CPDA-1 within 4 hr of transfusion. 2,3-DPG and p50 were studied as above.

As controls, we have measured p50 and 2,3-DPG concentration in 24 normal individuals. In addition, we have studied 12 patients with anemia due to other causes, including 4 with iron deficiency and 8 with sickle cell disease; 2 of the 2,3-DPG samples in this group were destroyed during the analysis. In this group of controls, the relationships among Hb concentration, 2,3-DPG level, and p50 were determined by regression analysis.

We have also studied one newly diagnosed patient with an...
acquired aplastic anemia during the first 2 mo of transfusion. His diagnosis was confirmed by bone marrow aspirate and biopsy; reticulocyte counts were between 0.0% and 0.1%. This patient differed from the thalassemics in that he was not iron overloaded. He was studied on 13 occasions, while his Hb concentration ranged from 7.3 to 12.8 g/dl. He received approximately 15 ml/kg of frozen-thawed red cells once every 3 wk.

RESULTS

In the 24 normal individuals, the mean hemoglobin was 14.3 ± 0.8 g/dl, with a mean 2,3-DPG concentration of 13.8 ± 1.4 μmole/g Hb, and a mean p50 of 27.2 ± 0.8 mm Hg. The 13 anemic, nontransfused patients (see Materials and Methods) had a mean Hb of 8.5 ± 1.4 g/dl, a mean 2,3-DPG concentration of 20.1 ± 1.3 μmole/g Hb, and a mean p50 of 33.8 ± 2.0 mm Hg.

In this nontransfused control group, regression analysis confirmed the well-known phenomenon that the 2,3-DPG concentration is an inverse function of the Hb (p < 0.001; Fig. 1). The slope of the regression line (-0.93) is in good agreement with data previously reported by others. In contrast, however, no correlation between Hb concentration (pretransfusion) and 2,3-DPG concentration could be demonstrated in the 20 transfused thalassemia major patients (r = 0.18, p = 0.45). This group of patients had inappropriately low 2,3-DPG concentrations for their Hb levels, with a mean Hb of 10.6 ± 0.5 g/dl and a mean 2,3-DPG of 13.8 ± 1.7 μmole/g Hb (expected value 18.5 μmole/g Hb). Red cell 2,3-DPG was equally low regardless of whether the patient received packed, leukocyte-poor, or frozen-thawed red cells.

Similarly, whereas in the controls the p50 was inversely correlated to the Hb concentration (r = -0.90, p < 0.001; Fig. 2), in chronically transfused patients with thalassemia major, the p50 was always inappropriately low for their Hb level (r = -0.25, p = 0.14), with a mean p50 of 27.1 ± 0.9 mm Hg for a mean Hb of 10.6 ± 0.5 g/dl (expected p50 = 32.7 mm Hg). It is important to realize that these absolute values of 2,3-DPG and p50 would be within “normal limits” for a normal Hb level, but are low for the observed Hb.

In the three patients who have been studied during the interval between transfusions, the p50 and 2,3-DPG concentration showed little movement from week to week. In this group, in whom the pretransfusion p50 averaged 25.3 mm Hg, with a mean 2,3-DPG concentration of 9.5 μmole/g Hb, the p50 reached a maximum mean level of 27.0 mm Hg 1 wk after transfusion, with a corresponding maximum mean 2,3-DPG concentration of 12.7 μmole/g Hb.

To evaluate the hypothesis that the inability of transfused red cells to synthesize adequate quantities of 2,3-DPG might be due to the “thalassemic environment,” we studied a newly diagnosed, newly transfused, non-iron-overloaded patient with aplastic anemia. This patient demonstrated a similar inability to appropriately increase 2,3-DPG and p50 as the Hb fell during the intertransfusion interval (Fig. 3).

To explore the possibility that a functional defect might be related to the duration of storage of transfused red cells, a 3-yr-old thalassemic patient was transfused consecutively 3 times with packed red cells that had been collected in CPDA within 4 hr of transfusion. At the 3 subsequent transfusion visits, the

---

Fig. 1. Red cell 2,3-diphosphoglycerate (2,3-DPG) as a function of Hb concentration. The control population (○) consisted of normal individuals as well as patients with anemia due to iron deficiency or sickle cell disease. The line is the result of a regression analysis of samples obtained from control subjects. 2,3-DPG concentration increased in controls as the Hb decreased (p < 0.001; r = -0.93). There was no correlation between 2,3-DPG and Hb concentration in thalassemic patients (□) (p = 0.45; r = -0.18).

Fig. 2. Red cell p50 as a function of Hb concentration. The control population (○) was identical to that in Fig. 1. The line is the result of regression analysis of samples obtained from control subjects. In controls, p50 increased as the Hb decreased (p < 0.001; r = -0.90). There was no correlation between p50 and Hb concentration in thalassemic patients (□) (p = 0.14; r = -0.26).
2,3-DPG AND p50 IN β-THALASSEMIA

Fig. 3. 2,3-DPG concentration (A) and p50 (B) as a function of Hb concentration in a patient with aplastic anemia (□). Regression analysis of control samples (○) is plotted as per Fig. 1.

mean hemoglobin concentration was 10.6 g/dl, in association with a mean 2,3-DPG level of 13.1 μmole/g Hb, and mean p50 of 26.0 mm Hg. These values for 2,3-DPG and p50 are, once again, inappropriately low for the Hb level.

DISCUSSION

Following the collection and storage of blood, the oxygen affinity of Hb increases due to the depletion of 2,3-DPG,8,9 a compound that regulates oxygen affinity by binding to the β-chains of the Hb molecule.10 After infusion, transfused red cells are able to synthesize 2,3-DPG up to “normal” values, thereby decreasing Hb oxygen affinity.11,12 It is well documented that, in various nontransfused anemic states, as the Hb concentration declines, there is a compensatory increase in 2,3-DPG and a decrease in Hb oxygen affinity, thereby ensuring adequate tissue oxygen delivery. But in 1974, deFuria and coworkers5 reported that, in chronically transfused patients with thalassemia major, Hb oxygen affinity was inappropriately high for the degree of anemia, suggesting an impairment of the ability of red cells to adapt to the decline in Hb during the intertransfusion interval. The patients studied by deFuria had been typically maintained at pretransfusion Hb concentrations of 8 g/dl, a regimen that was incapable of suppressing endogenous HbF production. Their findings were therefore somewhat inconclusive, as HbF does not readily bind 2,3-DPG and has an intrinsically higher oxygen affinity.14

Current more intense transfusion regimens are aimed at completely suppressing endogenous red cell production.3 One would expect that, in such chronically hypertransfused patients, if the biochemical response of the transfused cells to hypoxia were intact, the circulating red cell 2,3-DPG concentration would be elevated above normal immediately prior to transfusion, when the Hb concentration is at its nadir. The data shown in Figs. 1 and 2 indicate that the concentration of 2,3-DPG and the p50 remain at the “normal” level, fail to rise when the Hb falls, and therefore become inappropriately low for the corresponding level of Hb. In thalassemic patients, the observed p50s were always appropriate for the red cell 2,3-DPG concentrations, suggesting that the impaired response to the fall in Hb is due to inadequate 2,3-DPG synthesis. Additional studies of blood obtained from three patients during the weeks between transfusions support these findings and suggest that, during the intertransfusion interval, chronically transfused patients develop a “functional anemia,” in that there is inadequate modulation of Hb oxygen affinity in response to a declining Hb concentration.

It is well known that, in normal individuals, the concentration of 2,3-DPG and the p50 decrease as red cells age.15 Furthermore, Opalski and Beutler16 have reported that the increase of 2,3-DPG synthesis in response to anemia is much greater in patients with hemolytic anemia (including sicklers) with a young red cell population, than in patients with aplastic anemia, who have an older red cell population. Thus, young red cells appear to be more capable of responding to hypoxia than older red cells. It is possible that our observations of inappropriately low 2,3-DPG and p50 in chronically transfused patients simply reflect the relatively older red cell population present immediately prior to transfusion. This hypothesis is now being tested in a clinical trial of young red cell transfusions that is ongoing in our laboratory.

Initially, the possibility that the impaired synthesis of 2,3-DPG could be related to the iron-overloaded milieu of the thalassemic patient was considered. However, our observations of a similar pattern in a newly transfused, non-iron-overloaded patient with aplastic
anemia clearly indicate that this phenomenon is due to the transfused blood itself. In this patient, in whom the Hb was allowed to decline to lower levels than in the thalassemics, the concentration of 2,3-DPG and the p50 increased above the normals, an observation previously reported by Dickerman et al. However, the metabolic response of the transfused red cells, as in the thalassemic patients, was never adequate, considering the observed Hb concentration. When examined carefully, the data of Dickerman et al. are consistent with our findings.

We also attempted to determine whether the duration of blood storage was somehow responsible for impaired 2,3-DPG synthesis by repeatedly transfusing packed red cells within hours after collection in CPDA. This limited trial in one patient failed to increase 2,3-DPG and p50 before transfusion, suggesting that the impairment of red cell function occurs immediately upon blood collection.

Is the relatively high Hb oxygen affinity of transfused red cells of clinical importance in patients with β-thalassemia major? Oxygen transport to tissues is primarily a function of three variables: blood flow, Hb concentration, and the arteriovenous oxygen difference, the latter of which is a function of Hb oxygen affinity. It is clear that, in order to maintain a constant supply of oxygen to the tissues, given their relatively low level of Hb and relatively high oxygen affinity, in thalassemic patients the blood flow (i.e., cardiac output) must be chronically increased. Some of the residual pathophysiology associated with thalassemia major may be due, in part, to poor tissue oxygenation and high cardiac output. Thus, even with modern adequate transfusion modalities, a relative degree of tissue hypoxia may persist as a result of “functional anemia.”

ACKNOWLEDGMENT
We thank Susan Arendacs for her expert technical assistance. We would also like to thank Theresa McGuire, R.N., and Patricia Vallese, R.N., for their help in conducting these studies.

REFERENCES
15. Haidas S, Labie D, Kaplan J: 2,3-Diphosphoglycerate content and oxygen affinity as a function of red cell age in normal individuals. Blood 38:463, 1971
Inappropriately low red cell 2,3-diphosphoglycerate and p50 in transfused beta-thalassemia

A Correra, JH Graziano, C Seaman and S Piomelli