The Role of Sialic Acid in the Activation of Platelets by Wheat Germ Agglutinin

By Pankaj Ganguly and Nancy G. Fossett

Sialic acid is believed to play a critical role in the survival of blood platelets in circulation. Wheat germ agglutinin, which shows specificity for sialic acid, N-acetylgalactosamine, and N-acetylglucosamine, strongly activates platelets. The role of sialic acid in platelet activation by this lectin was studied utilizing neuraminidase-treated platelets and the succinylated lectin that has been reported not to recognize sialic acid. The succinylated lectin had a dimeric structure similar to the native lectin, but migrated more slowly in gel electrophoresis. The modified lectin bound to about 2.8 x 10^6 sites/cell, with an apparent dissociation constant of 2 μM compared to 5 x 10^5 sites/cell and a dissociation constant of 0.4 μM for the native lectin. The succinylated lectin neither aggregated nor agglutinated platelets, but agglutination of red cells in microtiter plates was normal. Aggregation of platelets by either wheat germ agglutinin or ristocetin was not affected by the succinylated lectin. Since the native wheat germ agglutinin is a strong activator of platelets and the succinylated derivative was devoid of all activity, it appears that a sialoprotein acts as the biologic receptor of wheat germ agglutinin in human platelets. This suggestion was strengthened by the observation that platelets treated with different concentrations of neuraminidase had a decreased capacity to bind this lectin. These platelets also showed reduced aggregation and serotonin secretion when activated with the native lectin. Since sialic acid has been implicated in the removal of platelets from circulation, wheat germ agglutinin may prove to be a useful tool to explore those clinical conditions in which platelet survival is shortened.

MATERIALS AND METHODS

Preparation of Lectin Derivative

Wheat germ agglutinin, isolated by affinity chromatography, was purchased from U.S. Biochemicals (Cleveland, OH). The lectin showed a single band in SDS-gel electrophoresis. Succinylated WGA was prepared as described. Briefly, WGA (about 10 mg) was dissolved in 5 ml of saturated sodium acetate, and the solution was placed in an ice bath. Solid succinic anhydride (6 mg) was then slowly added to the stirred protein solution, which became increasingly clearer with time. After 90 min, the solution was dialyzed against 2 x 11 distilled water and then lyophilized. The sample was reconstituted in sodium acetate and the succinylation step was repeated. The protein was dialyzed first against water and finally against phosphate-buffered saline (PBS, 0.025 M NaH_2PO_4 / Na_2HPO_4, 0.125 M NaCl, pH 7.2). Succinylated WGA prepared in this manner retains the capacity to bind N-acetylgalactosamine with an affinity similar to that of the unmodified lectin. The concentration of both WGA and succinylated WGA was measured assuming an extinction coefficient (E_m^1%) of 143.
Aggregation and Agglutination Assays

Blood was drawn from healthy volunteers into plastic syringes containing 0.1 vol of 3.8% sodium citrate as anticoagulant. The red cells were removed by low speed centrifugation and the platelet-rich plasma was collected. When desired, platelets were washed in the presence of 2 mM EDTA and resuspended in PBS. Platelet aggregation was measured in a dual channel aggregometer (Payton, Buffalo, NY). Secretion was measured with ^14C-serotonin-loaded platelets as described. Platelet counts in plasma were adjusted to the desired level with PBS. Agglutinating activity of WGA and succinylated WGA was routinely measured at room temperature in microtiter plates utilizing standard procedures. Human red cells and platelets were washed and suspended in PBS at 10^8 cells/ml and 10^9 cells/ml, respectively. Fifty microliters of the test material was serially twofold diluted in each well, and then 50 μl of the cell suspension was added. The plate was agitated for a few seconds and then sealed. All assays were done at least in duplicate and read usually after overnight incubation. Immunodiffusion studies were carried out in 1% agar plates as described. The antisera to WGA was prepared in rabbits in this laboratory, and quantitative precipitation studies showed that it contained 1.6 mg antibody/ml serum.

Lectin Binding

Wheat germ agglutinin or succinylated WGA was labeled with ^125I by the chloramine-T method, and the free label was removed by gel filtration. The agglutinating activity of the labeled lectins on red cells was similar to that of the unlabeled proteins. Platelets (2–3 × 10^9/ml) in PBS containing 0.1% bovine serum albumin were incubated with different amounts of the lectin for 15 min at room temperature. The cell-bound lectin was separated from free lectin by filtration through albumin-coated Millipore filters or by centrifugation through a layer of Versilub (General Electric). Details of these procedures have been published, and the results were the same by either method. Nonspecific binding of the lectin was determined in the presence of 0.1 M N-acetylglucosamine.

Other Methods

Gel electrophoresis of the proteins was carried out in 7.5% acrylamide. Molecular weight standards were phosphorylase (94,000), serum albumin (67,000), ovalbumin (43,000), carbonic anhydrase (30,000), and soybean trypsin inhibitor (20,000).

Platelets were treated with different concentrations of neuraminidase from Vibrio cholerae (Behring Diagnostics, Somerville, NJ) for 30 min at 37°C. Buffer was added to another aliquot of platelets and maintained as the control. The cells were then collected by centrifugation and resuspended in fresh buffer.

RESULTS

Properties of the Lectins

Wheat germ agglutinin, a pure protein with a molecular weight of 36,000, is composed of two similar subunits, each possessing two binding sites for sugars. The binding sites are thought to have an extended arrangement rather than a single pocket in the protein. The succinylated WGA preparation was characterized by remarkably high solubility in contrast to the native lectin, which is only sparingly soluble. The gel filtration pattern of WGA in the presence of N-acetylglucosamine showed a single peak. Succinylated WGA eluted slightly ahead of WGA under the

Fig. 1. Gel filtration pattern of wheat germ agglutinin (O) and its ^125I-labeled succinylated derivative (θ) through a column (1.6 cm × 56 cm) of Sephadex G100. The column was eluted with 0.025 M Tris-0.125 M NaCl, pH 7.4, containing 0.1 M N-acetyl-D-glucosamine. The flow rate was maintained at 10 ml/hr with a pump, and 1.1-ml fractions were collected.

Fig. 2. Gel electrophoretic patterns of wheat germ agglutinin and its succinylated derivative. The proteins were treated with 1% dodecyl sulfate-1% β-mercaptoethanol and then placed in a boiling water bath for 5 min before analysis by 10% polyacrylamide slab gel electrophoresis. The gel was stained with 1% Coomassie blue for proteins and destained with methanol-acetic acid. From left to right, lanes 1 and 3 contained 20 µg and 40 µg of the native lectin; lanes 2 and 4 contained 20 µg and 40 µg of the succinylated lectin; and lane 5 contained molecular weight standards. The numbers on the right show molecular weights in thousands.
same conditions and showed a similar pattern (Fig. 1). Thus, within the limitations of this method, WGA and succinylated WGA have a similar molecular weight under these conditions, and chemical derivatization of the lectin was not accompanied by subunit dissociation of the protein. In SDS-gel electrophoresis, WGA showed an intense band corresponding to a molecular weight of about 22,000 (Fig. 2). It is known that WGA dissociates into subunits under these conditions, and the monomers migrate slower than expected (mol wt 18,000), presumably due to retardation produced by a slight interaction of the lectin with the polyacrylamide support.13 A faint band, corresponding probably to dimeric WGA, could also be seen. Succinylated WGA had a slower electrophoretic migration, which could be due to the incorporation of negatively charged groups into the protein, as has also been observed with the carboxymethylated protein.22 No products of electrophoretic mobility intermediate between the native and succinylated lectins were observed, showing a reasonable homogeneity of the lectin derivative preparations. Both WGA and succinylated WGA showed a single precipitin line against the WGA antiserum. The lines merged with each other, indicating that succinylated WGA had antigenic properties similar to WGA (data not shown).

Agglutination Studies

The results of agglutination studies with human red cells and platelets by WGA and succinylated WGA are shown in Fig. 3. Platelets were strongly agglutinated in microtiter plates by WGA, with an end-point concentration of about 5–10 μg/ml. Succinylated WGA did not agglutinate platelets, even at a tenfold higher concentration. It is possible that the structure of the glycoconjugates on the platelet surface or the fluidity of the membrane makes these cells resistant to the agglutinating action of succinylated WGA. An alternative possibility is that our succinylated WGA preparation did not have any agglutinating activity due to chemical derivatization. To distinguish between these possibilities, we repeated the agglutination experiments with red cells from the same blood donor (A+). These red cells were agglutinated by WGA and succinylated WGA in a similar manner. Thus, the lack of agglutination of platelets by succinylated WGA is due to the properties of the membrane structures of these cells. It has been reported that succinylated WGA binds to glycoconjugates containing N-acetylglucosamine but not sialic acid, while WGA binds to both saccharides.13 Since succinylated WGA failed to agglutinate platelets under any conditions, it appears that a sialoglycoprotein acts as the WGA receptor, and sialic acid plays a critical role in platelet agglutination induced by WGA.

Binding Studies

It is possible that succinylated WGA fails to agglutinate platelets because of the high negative charge on the platelet surface that prevents the succinylated WGA molecules, which are also negatively charged at this pH, from binding to its receptors on the cell surface. To explore this possibility, we studied the binding of succinylated WGA to washed platelets (Fig. 4A). The amount of lectin bound increased with increasing amounts of lectin added and approached saturation around 120 μg/ml of lectin. In the presence of N-acetylglucosamine, the lectin-binding curve was linear. This nonspecific binding usually ranged between 10% and 20% of the total amount bound. The

Fig. 3. Agglutination pattern of human red cells and platelets by wheat germ agglutinin and its succinylated derivative in a microtiter plate. The amount of lectin in the first well in all sets was 10 μg, which was serially twofold diluted. The last well in all sets is a control without lectin. From top to bottom, first row—platelets and succinylated wheat germ agglutinin when the cells were not agglutinated at any lectin concentration; second row—platelets and unmodified wheat germ agglutinin with the end-point at well 4 (1.25 μg lectin); third row—red cells and unmodified wheat germ agglutinin with the end-point at well 6 (0.31 μg lectin); and last row—red cells and succinylated wheat germ agglutinin with the end-point at well 7 (0.16 μg lectin).
Fig. 4. (A) Binding of 125I-labeled succinylated wheat germ agglutinin to platelets. Platelets (2.5 x 10^7/ml) in phosphate-buffered saline were incubated with different amounts of the lectin for 16 mm at room temperature and then the cells were separated from the free ligand by oil centrifugation. (□) Gross binding of the lectin. (●) nonspecific binding in the presence of 0.1 M N-acetyl-D-glucosamine, and (△) net binding. (B) Double reciprocal plot of the data on the binding of succinylated wheat germ agglutinin to platelets. The number of binding sites per cell may be calculated from the intercept on the ordinate and the apparent dissociation constant from that on the abscissa. (○) Data from two different experiments on different days are shown.

Fig. 5. (A) Effects of wheat germ agglutinin and its succinylated derivative on platelets (3 x 10^7/ml) suspended in phosphate-buffered saline in the aggregometer. The native lectin (30 μg/0.5 ml) added at the arrow caused rapid clumping of platelets (curve a), while the succinylated lectin (50–200 μg), under the same conditions, had no effect (curve c). In curve b, platelets were first incubated for 10 min with succinylated wheat germ agglutinin (85 μg), and then native wheat germ agglutinin (30 μg) was added. The succinylated wheat germ agglutinin did not affect platelet aggregation by the native lectin. The results were the same when the platelets were in plasma. (B) Lack of effect of succinylated wheat germ agglutinin on platelet aggregation caused by ristocetin. Curve a shows the control platelet aggregation pattern induced by ristocetin (225 μg/0.5 ml). In the experiment shown in curve b, platelets were first incubated with 85 μg of the succinylated wheat germ agglutinin and then the same amount of ristocetin was added.
possibility further by studying the interaction characteristics of WGA with platelets treated with different concentrations of neuraminidase. The neuraminidase-treated platelets had a significantly lower capacity to bind WGA (Fig. 6). Approximately half of the lectin-binding sites were lost when the platelets were treated with 5 U/ml of neuraminidase, without any significant alteration in the affinity of binding. In contrast, the ability of platelets to bind thrombin is not affected by prior treatment with neuraminidase. Concomitant with the loss in the lectin-binding capacity, the neuraminidase-treated platelets also had markedly reduced ability to secrete serotonin and to aggregate in response to WGA (Figs. 7 and 8). Aggregation of the neuraminidase-treated platelets induced by several other agents was not reduced; in fact, the aggregation rate was slightly higher than the control, ruling out the possibility of any nonspecific alteration of the platelets due to the presence of a contaminating protease in the neuraminidase preparation. The data obtained (Fig. 7) indicate that the secretion of serotonin from platelets by WGA is particularly sensitive to the presence of the surface sialic acid.

DISCUSSION

Wheat germ agglutinin is being increasingly used for the structure-function studies of cell surface glycoproteins and glycolipids. It has been shown that WGA can bind to N-acetylglucosamine, N-acetylgalactosamine, and sialic acid, although what structure is precisely recognized by the lectin on the cell surface is not clear. Several studies have indicated that neuraminidase treatment of cells altered their binding of WGA and suggested that sialic acid residues form a part of the WGA receptor structure on these cells.

![Graph](image1.png)

Fig. 6. Effect of increasing concentration of neuraminidase on the binding of labeled wheat germ agglutinin (1 µg/ml, 6 x 10^6 cpm/µg) to fresh platelets. Platelets (2–3 x 10^9/ml), control or treated with neuraminidase, were incubated with a constant amount of the lectin for 16 min at room temperature, and the amount of lectin bound was determined by oil centrifugation.

![Graph](image2.png)

Fig. 7. Effect of neuraminidase treatment of platelets on the secretion of serotonin induced by wheat germ agglutinin. Platelets in plasma were loaded with [3H]-serotonin, washed, and treated with different concentrations of neuraminidase. After washing, the platelets were resuspended in platelet-poor plasma, and the serotonin secretion was measured after the addition of a constant amount of wheat germ agglutinin (50 µg/ml).

Proton magnetic resonance studies indicated a k_{sec} of 238 M$^{-1}$ for N-acetylglucosamine and 560 M$^{-1}$ for N-acetylmuramic acid. Succinylated WGA is an acidic protein with an isoelectric point (pI) of 4.0, while the native lectin is basic, with a pI of 8.5. Both the native lectin as well as its derivative have a dimeric structure at the physiologic pH, with a molecular weight of about 36,000. Succinylated WGA and native WGA agglutinate red cells from humans and rabbits, and murine thymocytes and splenocytes in a similar manner. However, horse red cells are agglutinated by native WGA but not by succinylated WGA. Similarly, the binding of WGA but not succinylated WGA to BHK 21C13 cells is drastically reduced by prior neuraminidase treatment of the cells. These observa-
tions have led to the suggestion that succinylated WGA does not bind to glycoconjugates containing a significant amount of N-acetylneuraminic acid.13,14 Platelets are rich in sialic acid, and a large part of the surface sialic acid is located on the glycoprotein-one complex, which preferentially binds WGA in intact platelets.9,24 Succinylated WGA neither activated platelets nor blocked platelet aggregation by native WGA. Thus, it appears that a sialoglycoprotein acts as a biologic receptor for WGA. The glycoprotein-one complex is an attractive candidate as the WGA receptor that mediates platelet activation by the lectin, although the present study does not rule out the possible involvement of any other sialoglycoprotein in this process. Since succinylated WGA did not affect platelet aggregation either by native WGA or by ristocetin (plus vWF), it is unlikely that it binds to any appreciable extent to the glycoprotein-one complex. The present results do not exclude the possibility of native WGA also binding to the receptor of succinylated WGA on the platelet. However, this receptor is likely to be biologically nonproductive, because succinylated WGA under no conditions aggregated platelets or induced secretion of serotonin.

We have previously reported the development of a nonagglutinating lectin derivative that was prepared by cyanogen bromide treatment of WGA at acid pH.19 This derivative blocked platelet activation by thrombin, while aggregation induced by several other agents was not significantly affected. Then, utilizing this derivative as an affinity probe, we isolated a multiprotein complex that appears to modulate the action of thrombin on platelets.29 The succinylated WGA reported in this study neither caused platelet agglutination nor blocked platelet agglutination by WGA. It seems that the succinylated WGA does not compete with WGA for a biologically productive site on platelets. In contrast, succinylated concanavalin-A (Con-A) is thought to bind to the same cell receptor as native Con-A.30 The succinylated WGA, like the cyanogenbromide-derivatized WGA, may be a useful tool to explore the initial events in platelet activation by physiologic agents. For example, preliminary studies in this laboratory show that succinylated WGA is an inhibitor of platelet aggregation by thrombin.

Platelets are known to be rich in sialic acid. Approximately 50% of the sialic acid may be removed with neuraminidase and appears to be located on the cell surface. A large part of this sialic acid is in the glycoprotein-one complex on the platelet membrane.31 Human platelets survive for about 1 wk to 10 days in circulation. Although the precise nature of the changes that cause removal of the old platelets remains unclear, it is known that platelets treated with neuraminidase are rapidly cleared from circulation.3 Similarly, platelets from Bernard-Soulier patients, which are deficient in sialoglycoprotein-one and sialic acid, have a shortened survival time.32 Thus, it is likely that the surface sialic acid is one of the factors that dictates the survival of platelets in circulation. It has been suggested that the shortened platelet survival observed in different pathologic conditions may be due to the removal of sialopeptides from the glycoprotein-one complex by the action of plasmin.31 Platelet aggregation studies under these conditions with conventional agents have led to ambiguous results. The data presented in this article suggest that surface sialic acid is an important factor in determining the degree of activation of platelets by WGA. Wheat germ agglutinin might be used as a sensitive probe of platelet function in those conditions in which platelet survival is altered, possibly due to a modification of surface glycoproteins.33 The extent of aggregation and secretion of the platelets under these conditions, compared to normals, may provide a rapid estimation of the sialic acid present on the surface of these cells.

\textbf{REFERENCES}

11. Ganguly P, Fossett NG: Evidence for multiple mechanisms of
interaction between wheat germ agglutinin and human platelets. Biochim Biophys Acta 627:256, 1980
The role of sialic acid in the activation of platelets by wheat germ agglutinin

P Ganguly and NG Fossett