The Origin of Cerebrospinal Fluid Procoagulant Activity

By Diane M. Komp, Lionel P. Clyne, and Edmund Sullivan

The cerebrospinal fluid of children treated with CNS prophylaxis for acute lymphoblastic leukemia contains a procoagulant that is cell-associated and behaves like tissue factor. This activity cannot be demonstrated in a platelet-poor system.

GRAEBER AND STUART† reported an increase in procoagulant activity in the cerebrospinal fluid (CSF) of children with acute lymphoblastic leukemia (ALL) following prophylactic central nervous system (CNS) treatment with cranial radiation and intrathecal methotrexate. They postulated that the origin of "CSF procoagulant." is cell-associated and behaves like tissue factor. This activity cannot be demonstrated in a platelet-poor system.

Graeber and Stuart† reported an increase in procoagulant activity in the cerebrospinal fluid (CSF) of children with acute lymphoblastic leukemia (ALL) following prophylactic central nervous system (CNS) treatment with cranial radiation and intrathecal methotrexate. They postulated that the shortening of the plasma recalcification time (PRT) reflected the presence of brain phospholipid released into the CSF by demyelination.

The purpose of the study reported here was to examine in more detail the phenomenon they described. We offer an alternative postulate for the origin of "CSF procoagulant."

MATERIALS AND METHODS

Substrate Plasmas

All blood samples were collected into plastic syringes and processed entirely with plastic until time of use. Blood was anticoagulated with 3.8% sodium citrate in a ratio of nine parts whole blood to one part anticoagulant unless otherwise specified.

Centrifugations at 4300 g or less were performed in an International Centrifuge Model PR-6. Ultracentrifugation was performed in a Sorvall Superspeed RCZ-B machine. In the text, substrate plasmas will be referred to as follows: standard plasma—500 g for 15 min. “platelet-poor” plasma—4300 g for 30 min; ultracentrifuged plasma—39,000 g for 30 min.

Plasmas from individuals with factor VIII or factor IX deficiencies (-1%) were prepared as standard plasma above. Factor V deficient plasma was prepared by the method of Biggs.2 Plasma congenitally deficient in factors, II, VII, X, XI, or XII were purchased from George King (Overland Park, Kans.). The plasmas were prepared by centrifugation at 4000 rpm for 20 min when freshly drawn from the donors into 0.1 M buffered citrate anticoagulant.1

Millipore filtration was performed on 5-ml aliquots of standard plasma using 25-mm Nucleopore filters (Pleasanton, Calif.) with 0.2-μm pores.

Cerebrospinal Fluids

CSF was collected into plastic tubes. Cytocentrifugation was performed on fresh samples using a Shandon-Elliot Cytospin, Mark II (Shandon Southern Scientific, Sewickley, Pa.). Samples of 0.5 ml were centrifuged at 1000 rpm (135 g) for 1.5 min, centrifugation interrupted, and residual fluid aspirated from the sample chamber which tilts away from the vertical at rest. The centrifugation was then completed (additional 3.5 min) so that the side arm was clear of fluid before the slide was removed for staining with Wright-Giemsa as previously described.4 This centrifuge spins cells through the fluid onto glass slides. With a fluid the viscosity of normal saline (i.e., CSF), most cells of approximately 5 μ diameter will adhere to the slide during the first 1.5 min. The additional centrifugation time is used to complete the adsorption of fluid onto the filter card.

Recalcification Times

Coagulation tests were performed in triplicate using a Fibrometer (FibroSystem, BioQuest Division, Becton-Dickinson, Cokeysville, Md.). Tests used 0.1 ml substrate plasma, 0.1 ml blank or CSF, and 0.1 ml 0.025 M CaCl₂ unless otherwise indicated. Plasma substrates and CSF were incubated for 1 min prior to performance of recalcification times.

RESULTS

Effect of Centrifugation of Substrate Plasma

Blood of 20 normal donors was pooled after centrifugation at 500, 4300, or 39000 g. Recalcification times were performed after 3-min glass activation. The CSF from five children who were completing cranial radiation and intrathecal therapy were substituted for saline (control) and tested using each of the variously centrifuged plasmas as substrate. Table I summarizes the inability of these “active” CSFs to shorten the recalcification time of ultracentrifuged and filtered plasma.

Correction of Congenitally Deficient Plasmas

PRTs were performed after 3-min glass activation upon plasmas congenitally deficient in II, VII, VIII, IX, X, XI, and XII and artificial factor-V-deficient plasma substituting active CSFs for saline. Table 2

Table 1. Effect of Substrate Plasma Centrifugation on CSF Procoagulant Expression

<table>
<thead>
<tr>
<th>Substrate Plasma</th>
<th>Recalcification Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Platelet Poor</td>
</tr>
<tr>
<td></td>
<td>(sec)</td>
</tr>
<tr>
<td>Saline</td>
<td>110.9</td>
</tr>
<tr>
<td>353</td>
<td>91.3</td>
</tr>
<tr>
<td>354</td>
<td>86.4</td>
</tr>
<tr>
<td>355</td>
<td>81.9</td>
</tr>
<tr>
<td>356</td>
<td>82.4</td>
</tr>
<tr>
<td>357</td>
<td>76.9</td>
</tr>
</tbody>
</table>
Table 2. Correction of PRT of Congenitally Deficient Plasma by CSF Procoagulant

<table>
<thead>
<tr>
<th>Substrate Plasma</th>
<th>Plasma Recalcification Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Saline (sec)</td>
</tr>
<tr>
<td>Normal</td>
<td>149.4</td>
</tr>
<tr>
<td>II Deficient</td>
<td>222.9</td>
</tr>
<tr>
<td>V Deficient</td>
<td>198.4</td>
</tr>
<tr>
<td>VII Deficient</td>
<td>151.8</td>
</tr>
<tr>
<td>VIII Deficient</td>
<td>314.9</td>
</tr>
<tr>
<td>IX Deficient</td>
<td>276.4</td>
</tr>
<tr>
<td>X Deficient</td>
<td>161.0</td>
</tr>
<tr>
<td>XI Deficient</td>
<td>298.3</td>
</tr>
<tr>
<td>XII Deficient</td>
<td>>400</td>
</tr>
</tbody>
</table>

presents the average of five "active" CSFs. Shortening was seen of VIII, IX, XI, and XII deficient plasmas but not, however, those deficient in II, V, VII, or X.

Effect of CSF Filtration

Five active CSF samples were Millipore filtered. Separate aliquots of the same samples were cytocentrifuged with a short spin as described in the methods section and the "supernatants" aspirated. Table 3 presents the results of plasma recalcification times using these CSFs. The removal of cells by either filtration or cytocentrifugation diminished the procoagulant activity. Figure 1 demonstrates the typical mononuclear cells found in the active CSF samples.

DISCUSSION

The more effective removal of platelets by either ultracentrifugation or Millipore filtration rendered the

substrate plasma insensitive to the CSF procoagulant. Aoki and von Kaulla and Caldwell have defined the necessity for either platelet factor 3 or phospholipids in the system where urinary procoagulant expresses its activity. Although many authors define "platelet-poor plasma" at speeds of less than 5000 g, Surgenor et al. stated that speeds of 81,000 g for 45 min are required to completely remove platelet activity. Biggs emphasizes the platelet variability as a major problem with the plasma recalcification time as a clinical tool, normal ranges extending from 80 to 250 sec. Graeber and Stuart limited their choice of substrate plasmas to those in the middle of that range (150–180 sec) and prepared their plasma by centrifugation at 1800 g for 15 min.

Tissue factor is a lipoprotein complex. It is possible, therefore, that the cell-associated protein component is present in the CSF, which then combines with platelets when they are present in plasma to form a whole tissue factor complex. It has been demonstrated...
by others15,16 that when the lipid portion is removed from tissue factor, it loses its capacity to activate the extrinsic pathway.

We concur with Graeber and Stuart1 that the CSF of children with ALL who have received preventive central nervous system treatment is capable of shortening the plasma recalcification time but offer an alternative hypothesis to the release of brain phospholipids from demyelination; lumbar punctures, intrathecal therapy, or radiation therapy is responsible for the presence of mononuclear cells in the CSF capable of expressing tissue factor activity.

Rickles et al.17,19 have described tissue factor generation by monocytes in response to antigens, mitogens, and endotoxin with the assistance of lymphocytes. Monocytoid cells are normally found in a proportion of three monocytoid cells to seven lymphocytes in the CSF.2 Sayk21 has referred to reactive conditions with a relatively increased proportion of monocytoid cells as the "subacute irritation syndrome." Oehmichen20 has observed massive migration of mononuclear cells into the CSF space after repeated lumbar punctures.

Although CSF cell counts did not correlate with CSF procoagulant activity in Graeber's study, chamber count methodology is insensitive to detection of the small numbers of cells that can be concentrated by cytocentrifugation.4,5 Their study and the report by Brueton et al.22 demonstrate similar findings in the CSF of children with infectious meningitis.

A similar cell-associated phenomenon has been described by Zarcharski and Rosenstein23 for salivary tissue factor that requires factor VII as a cofactor and is diminished by removal of the mucosal epithelial cells by centrifugation. The Millipore and Cytospin removal of cells from our spinal fluid samples accomplished the same effect in our system, supporting the hypothesis that the "CSF procoagulant" is a similar cell-associated tissue factor.

\textbf{REFERENCES}

3. George King Co: Personal communication
7. Shandon Scientific, Sales Manual
13. Stuart MJ: Personal communication
The origin of cerebrospinal fluid procoagulant activity

DM Komp, LP Clyne and E Sullivan