Collection of Pluripotential Hematopoietic Stem Cells by Cytapheresis

By Larry C. Lasky, Robert C. Ash, John H. Kersey, Esmail D. Zanjani, and Jeffrey McCullough

Successful complete hematopoietic reconstitution (CHR) using nonleukemic peripheral stem cells (PSC) after marrow ablation has been reported in animals but not man. Previous studies of cytapheresis products from humans, as a prelude to use for CHR, have documented the presence of committed myeloid (CFU-GM) and erythroid (BFU-E) precursors. We have examined mononuclear cell (MNC) products collected on the Fenwal C53000 Blood Cell Separator for these plus the more primitive mixed (granulo-, erythro-, mono-, and megakaryocytic) cell colony-forming units (CFU-GEMM) and for various lymphocytic subpopulations (LSP). One to two-hour products contained 36 ± 7 CFU-GEMM/10^6 MNC (mean \pm SE, $n = 8$) or 490 ± 131 ml product. This compared favorably with blood ($23 \pm .4/10^6$ MNC or 46 ± 8 /ml, $n = 14$) and bone marrow ($146 \pm 58/10^6$ MNC, $n = 12$). Collection efficiency for E-rosette-positive cells approximated that for total lymphocytes and was variable for other LSP. Recovery of CFU-GEMM after freezing in 10% dimethylsulfoxide at a controlled rate and storage in liquid N$_2$ was $54\% \pm 8\%$ ($n = 8$). Cytapheresis collection of large numbers of pluripotent hematopoietic precursors and demonstration of adequate recovery of these after cryopreservation, both previously unreported, are significant steps toward eventual CHR using nonleukemic PSC.

COMPLETE HEMATOPOIETIC reconstitution following marrow ablation with radiation and/or chemotherapy may be possible in humans using stem cells collected from normal peripheral blood. Committed stem cells, including granulocyte-monocyte colony-forming units (CFU-GM) and/or erythroid burst-forming units (BFU-E) have been assayed in cytapheresis products collected with several different pheresis devices.\(^1\)\(^1\) Nonleukemic hematopoietic stem cells collected from peripheral blood have rescued animals from marrow ablation following radiation and chemotherapy.\(^4\) Successful hematopoietic reconstitution has yet to be achieved in humans.\(^5\)\(^6\)

Several recent developments in quantitative assessment of hematopoietic progenitor cells, storage techniques, and pheresis technology that may affect the goal of human hematopoietic reconstruction using peripheral stem cells have come about. (1) Messner and coworkers\(^7\)\(^8\) have described an in vitro culture for a pluripotential stem cell measured by growth in single colonies of granulocytic, erythrocytic, monocytic, and megakaryocytic cell types (CFU-GEMM). The CFU-GEMM possesses at least some features analogous to the pluripotential murine splenic colony-forming unit (CFU-S). (2) Controlled rate freezing in 10% dimethylsulfoxide (DMSO) and storage in liquid nitrogen has been shown to adequately preserve hematopoietic stem cells from bone marrow, as measured functionally by reconstitution with stored marrow\(^9\) and by CFU-GM in stored marrow\(^10\) and peripheral blood concentrate.\(^11\) (3) A computer controlled blood cell separator, the Fenwal CS3000, has been introduced and evaluated for collection of platelets and granulocytes\(^12\)\(^13\) from normal donors. The device eliminates the need for a rotating seal between the centrifuge and the donor/patient, potentially allowing a completely “closed” collection system that vastly minimizes the possibility of introduction of foreign material into the product and/or donor/patient. The computer control and adjustable but reproducible separation and collection chambers make this machine ideal for collection of a particular cell type consistently from donor-to-donor, with minimal operator-to-operator variation.

We report the use of the Fenwal CS3000 Blood Cell Separator for collection of mononuclear cells (MNC) from normal subjects. We also report the hematopoietic stem cells content, including CFU-GM, BFU-E, and the more primitive CFU-GEMM, as well as various lymphocytic subpopulations for these MNC. Recovery after controlled rate freezing in 10% DMSO and storage in liquid nitrogen for the various stem cell types is also reported.

MATERIALS AND METHODS

Cell Collection

Healthy male volunteers that met the American Association of Blood Banks criteria for whole blood donation were used. Informed consent was obtained. Both the consent form and the procedures were approved by our institutional human studies committee. Donors were not treated with steroids.

The two-armed technique, as is required by the CS3000,\(^14\) was used in all subjects. Sixteen-gauge Terumo needles were inserted in

From the University of Minnesota School of Medicine and the Minneapolis Veterans Administration Medical Center, Minneapolis, Minn.

Supported in part by Minnesota Medical Foundation Grant ABF-13-80, the Veteran's Administration, and Grants CA 23021 and AM 24027 from the National Institutes of Health.

Submitted October 12, 1981; accepted December 10, 1981.

Address reprint requests to Larry C. Lasky, M.D., Mayo Box 198, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minn. 55455.

© 1982 by Grune & Stratton, Inc. 0006-4971/82/5904-0018$1.00/0

822 Blood, Vol. 59, No. 4 (April), 1982
antecubital veins, one in each arm. The needles were connected to the pheresis set, already primed automatically by the CS3000, as they were inserted. The microprocessor was then instructed to perform standard leukocytic collections, with certain modifications, notably nonstandard centrifuge speeds. Standard granulocyte separation (D36) and collection (A35) chambers were used. Whole blood flow rate was 50 ml/min. Acid citrate dextrose NIH solution A (ACD) was mixed with whole blood in a ratio of 1:10 to 1:12. Hydroxyethyl starch was not used, although this substance is routinely used to collect granulocytes. Two 1-hr collections, separated by collection of specimens from the donor and product, or single 2-hr collections were performed. At the end of each procedure, the contents of the pheresis set, other than the collection bag, were reinfused into the donor, again under microprocessor control.

Cell Preparation and Marker Studies

The method for purification of mononuclear cells (MNC) for analysis was similar both for putative stem cell preparations and for accompanying peripheral blood to be used for comparison purposes. Pairing each product with simultaneously drawn blood allowed calculation of the degree of concentration for various cell populations. The product or blood was collected in heparinized syringes and was diluted 1:2 in tissue culture media. Nine milliliters of suspension was layered on 3 ml of Ficoll-Hypaque at a specific gravity of 1.078. This was centrifuged at 400 g for 30 min. The opaque layer of lymphocytes at the interface was removed and placed in a conical tube for washing with media. The wash was performed at 250 g for 10 min and repeated 3 times. For sheep rosette determinations and immunofluorescence (see below), two drops of latex particles/tube were added and the tubes were rocked at 37°C for 30 min in order to identify phagocytic cells.

For sheep erythrocyte binding, sheep cells were obtained commercially or collected from sheep, defbrinated, and stored in Alsevers solution. One-tenth milliliter of packed sheep red blood cells was resuspended in 100% absorbed newborn calf serum to create a 0.5% solution of sheep red blood cells. Mononuclear cells (10^6) in 0.25 ml of media was mixed with 0.25 ml of sheep red blood cells. This was incubated for 5 min at 37°C in water in an incubator. The mixture was then spun in a serofuge for 3 min. It was incubated at 4°C for 1 hr. Duplicate samples were read. Two-hundred white cells each were counted. Three or more sheep red blood cells around a lymphocyte were defined as a positive sheep erythrocyte rosette.

To assess the presence of surface immunoglobulin, the cells were stained using tetramethylrhodamine isothiocyanate goat anti-human immunoglobulin (Cappel Laboratories, Cochranville, Pa.) at a 1:8 dilution for 30 min at 4°C. Cells were then washed 3 times in buffer, mounted under glass coverslips, and examined for fluorescence using a Zeiss fluorescent microscope equipped with Ploem epi-illumination.

Recently, monoclonal anti-T-cell antibodies, which are much more specific than antithymocyte globulin for immunoreactive thymocytes, and monoclonals versus other leukocyte antigens have been developed. These monoclonal antibodies have been purified from ascites of hybridoma-bearing mice. The OKT3 antibody identifies human T lymphocytes. OKT4 recognizes inducer-helper T cells. OKT8 can be used to identify suppressor/cytotoxic T cells. The BA-1 antibody, a monoclonal antibody directed against the NALM6-M1 acute lymphoblastic leukemia (ALL) cell line, reacts with peripheral blood B lymphocytes, chronic lymphocytic leukemias, pre-B-cell ALL, most non-Hodgkins lymphomas, and most non-T, non-B ALLs. Monoclonal antibody J5 is directed against the common ALL antigen. This antibody was kindly supplied by Dr. Jerome Ritz, Sidney Farber Cancer Center, Boston. BA-2 antibody is directed against cells early in the lymphocyte line. All of these monoclonal antibodies have been used to characterize subpopulations of mononuclear cells.

Freezing and Storage

Cells to be frozen, suspended in either autologous plasma or Hank's Balanced Salt Solution (Hanks) with 5% human albumin at concentration of less than 200 x 10^6/ml, were mixed with an equal volume of 20% DMSO in Hanks with 5% human albumin, and placed at zero degrees centigrade in 4-ml polypropylene tubes. Samples were then frozen in a Cryo-Med controlled rate freezer at 1°C/min, before and after phase change, down to -60°C, and at 3°/min, down to -90°C. The samples were then placed rapidly into liquid nitrogen and stored until analysis.

Thawing was accomplished by placing the sample tubes in lukewarm water. As soon as the samples became liquid, they were diluted 1:10 with Hanks with 5% human albumin and 50 U heparin/ml. Samples were then washed 2 times in Hanks with albumin and cultured.

Culture Techniques

A modification of the CFU-GEMM (granulocyte, erythrocyte, megakaryocyte, monocyte precursor) assay of Messner was performed on stem cell preparations from peripheral blood and pheresis concentrates. This modification, developed by Ash et al., is important in that it, unlike Messner's original technique, produces more colonies for bone marrow, by a factor of three, than for MNC for peripheral blood. The coefficient of variation, both within and between normal individuals, is also smaller (as is the extent of the "normal range"). Phytomhamagglutinin (PHA) leukocyte conditioned medium was made by culture of human peripheral blood leukocytes for 7 days in the presence of 1% (v/v) PHA and 10% fetal calf serum. Human erythropoietin was made from the urine of anemia patients. Mononuclear cells were mixed with 30% fetal calf serum, 5 x 10^-7 M 2-mercaptoethanol, 5% percent PHA-leukocyte conditioned medium, 1 U/ml erythropoietin, Iscove's modified Dulbecco's medium, and methylcellulose to a concentration of approximately 1% (w/v). The cultures were incubated at 37°C in a humidified 5% CO2 atmosphere. The cultures were examined after incubation for 15 days. Colonies containing visible hemoglobin were, on a random sampling basis, removed by micropipette and mounted on slides using cytocentrifugation, or examined in situ with an inverted microscope. Wright's and other stains (including nonspecific esterase and peroxidase) were applied in order to identify the nature of the colonies. CFU-GMs and BFU-Es were also quantitated on these plates.

RESULTS

The volume of the products ranged from 180 to 200 ml (Table 1). The total product white count averaged...
Using the 1000-rpm centrifuge speed, a mean of 392 ± 143 CFU-GEMM/ml (mean ± standard error of the mean) were collected in five 1–2-hr runs (Table 1). This compares favorably to several determinations made on peripheral blood, in which a mean of 46 ± 8 CFU-GEMM/ml (n = 14; range 8–100/ml) were found. Expressed per 10⁶ MNC, the cellular concentrates contained 32 ± 10 CFU-GEMM (n = 5) and peripheral blood 23 ± 4 (n = 14). A comparable set of determinations on bone marrow from healthy male volunteers showed 146 ± 58 CFU-GEMM/10⁶ MNC (n = 12).²¹ The CFU-GEMM colonies from the concentrate were qualitatively similar to those found in culture of bone marrow. A single determination performed on a 1-hr 800-rpm product held 45 CFU-GEMM/10⁶ MNC or 358/ml. Two 1400-rpm 1-hr products held 22 and 65 CFU-GEMM/10⁶ MNC or 425 and 1180/ml. Collection efficiency for CFU-GEMM ranged from 45% to 175% for 1000-rpm runs, was 78% for the 800-rpm run, and was 103% and 113% for the 1400-rpm runs. The efficiencies were invariably larger than the corresponding MNC collection efficiency for a given donor, implying a relative concentration of CFU-GEMM over MNCs.

CFU-GM and BFU-E averaged 366 and 1541/ml of concentrate, respectively, considering all speeds (5 at 1000, 1 at 800, and 2 at 1400 rpm). This translates to 27.5 and 139/10⁶ MNC, respectively. Peripheral blood contained an average of 40 and 184/ml or 25 and 93/10⁶ MNC, respectively (n = 14). The collection efficiency for BFU-E and CFU-GM both averaged 68%

Recovery after controlled rate freezing in 10% DMSO and storage for 15–42 days in liquid nitrogen is summarized in Table 2. The mean CFU-GEMM recovery was 54%, while that for BFU-E was 63% and for CFU-GM 64%

DISCUSSION

Complete hematopoietic reconstitution using normal human peripheral blood stem cells may be possible. Such reconstitution has been achieved in animals. Stem cells collected from the blood of individuals with chronic granulocytic leukemia have also been utilized successfully. Previous studies have documented the presence of circulating committed granulocyte monocyte (CFU-GM) and erythrocyte (BFU-E) precursors

<table>
<thead>
<tr>
<th>Table 1. Cells Collected in 1–2 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produced at:</td>
</tr>
<tr>
<td>Number of procedures</td>
</tr>
<tr>
<td>Mean collection volume (ml)</td>
</tr>
<tr>
<td>Mean total white count x 10⁶/ml</td>
</tr>
<tr>
<td>Mean percent lymphocytes</td>
</tr>
<tr>
<td>Mean percent mononuclear cells (MNC)</td>
</tr>
<tr>
<td>Mean percent granulocytes</td>
</tr>
<tr>
<td>CFU-GEMM</td>
</tr>
<tr>
<td>per ml</td>
</tr>
<tr>
<td>per 10⁶ NC</td>
</tr>
<tr>
<td>CFU-GEMM</td>
</tr>
<tr>
<td>per ml</td>
</tr>
<tr>
<td>per 10⁶ MNC (blood)</td>
</tr>
<tr>
<td>MNC, mononuclear cell; NC, nucleated cell.</td>
</tr>
<tr>
<td>*Mean values for healthy adult men (bone marrow figure from reference 21).</td>
</tr>
</tbody>
</table>

18.3 x 10⁶/ml for seven 1000-rpm procedures, was 9.6 for a single 800-rpm procedure, and averaged 18.7 for two 1400-rpm procedures. Average differential values, expressed as percentages, were 76, 90, and 10 for lymphocytes, MNC, and granulocytes, respectively, for seven 1000-rpm runs; 63, 83, and 17 for the 800-rpm procedure; and 83, 100, and 0 for two 1400-rpm procedures.

Collection efficiency, defined as the number of cells processed (or the mean number of cells/ml blood times the number of ml of blood processed) divided into the number of cells collected, expressed as a percentage, averaged 47 and 45 for lymphocytes and MNC, respectively, for seven procedures performed at 1000 rpm. These values were 25 and 26 for a single procedure performed at 800 rpm, and averaged 83 and 78 for two procedures performed at 1400 rpm.

Surface marker studies performed on the MNC collected during six 1000-rpm phereses showed that the E-rosette-positive percentage (69.5% ± 5.6%, mean ± SE) closely approximated the OKT3-positive percentage (61.6% ± 5.9%). The collection efficiency for these lymphocyte subpopulations (34.5% ± 6% for E-rosette and 31.5% ± 3.6% for OKT3-positive cells) approximated that for morphological lymphocytes overall (37.6% ± 7.5%). Efficiency of collection of surface immunoglobulin-positive B cells (26.8% ± 7.6%) also did not to differ significantly from the lymphocyte collection efficiency. The efficiency of collection of other surface marker positive cells, including J5, OKT4, OKT8, BA-1, and BA-2, showed no consistent relationship to the lymphocyte or stem cell (as described below) collection efficiencies.

<table>
<thead>
<tr>
<th>Table 2. Percent Freezing Yield for Eight Mononuclear Cell Apheresis Product Samples Stored in Small Tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFU-GEMM</td>
</tr>
<tr>
<td>Storage Time (days)</td>
</tr>
<tr>
<td>Mean ± SE</td>
</tr>
<tr>
<td>Range</td>
</tr>
</tbody>
</table>
in peripheral blood and cytapheresis concentrates from humans. Despite the presence of these committed precursors, complete hematopoietic reconstruction in man using stem cells isolated solely from nonleukemic peripheral blood has yet to be reported. Two published reports have documented unsuccessful attempts to achieve this. Both discuss only the committed colony-forming unit (CFU-GM) content of the stem cell concentrate. Failure in each case may have been related to inability to evaluate the “stem cell” preparation for pluripotent stem cells. In this article we have documented the presence of the more primitive and less committed mixed cell colony forming unit (CFU-GEMM) in products of cytapheresis specifically designed for the stem cell collection.

The CFU-GEMM assay utilized in this study identifies a class of human hematopoietic progenitors that exhibit at least some features that characterize the pluripotent stem cell of the mouse (CFU-S). Since such pluripotential progenitors are those cells from which both committed progenitors, and ultimately, all of the several mature blood cell types derive, we believe that this type of study may provide a better quantitative assessment of the “stem cell” content of cytapheresis products for hematopoietic reconstitution.

The CFU-GEMM is functionally identified by ability to form mixed hematopoietic colonies in which differentiated granulocytic, erythroid, monocyte-macrophage, and megakaryocytic elements can be recognized. That such colonies are the clonal products of single cells has been demonstrated by karyotype analysis of single colonies formed in coculture experiments and supported by sedimentation velocity studies showing that these “colony-forming units” have size characteristics of single cells similar to BFU-E and CFU-GM. This has also been shown by the linear relationship, extrapolating to zero, between cells plated and colonies detected. Recloning experiments also support the concept that CFU-GEMM have “stem cell” properties not possessed by the committed progenitors, in that CFU-GEMM have a capacity for giving rise to secondary colonies of differentiated progenitor type and for at least limited self-renewal in vitro. We therefore believe that such studies as this offer additional information about the hematopoietic capacity of peripheral MNC.

The numbers of CFU-GM and BFU-E isolated in the MNC products reported here are comparable to those reported in previous studies. In a number of other reports, the normal peripheral blood colony count is not available for comparison. When it is, the ratio of stem cell numbers in the product versus that in peripheral blood are within an order of magnitude of those that we find in our MNC products.

The assay that we have used measures about 150 [actually 146 ± 58 (mean ± SE, n = 12)] CFU-GEMM/10⁶ MNC in normal bone marrow. If one assumes that 3 × 10⁶ nucleated cells/kg recipient body weight are necessary for an allogeneic bone marrow transplant (BMT) (this is the figure used for collection purposes at the University of Minnesota), and that 30% of these are “mononuclear” cells (morphological lymphocytes and monocytes), then at least 6 × 10⁹ bone marrow mononuclear cells are necessary for a BMT in a 70-kg human. This contains about 9 × 10⁶ CFU-GEMM. If a 4-hr CS3000 MNC cytapheresis will produce 2 × 10⁹ CFU-GEMM, and if they are qualitatively identical to those from bone marrow in their repopulating ability, then about 4 or 5 cytaphereses would be necessary for an allogenic BMT using only fresh peripheral stem cells. A freezing and storage loss of 60% (pessimistically) would make 9–12 procedures necessary, relying only on frozen-stored products. Since the recipient’s residual immune system would tend to tolerate the cells for autologous hematopoietic reconstruction, less (perhaps one-third as many) CFU-GEMM, and hence cytapheresis products, would be necessary.

Bone marrow has been successfully frozen, generally with dimethylsulfoxide (DMSO) as a cryoprotectant, and after thawing, transfused, producing successful bone marrow engraftment, both in animals and humans. A so-called “closed system” for collection and freezing of stem cells from peripheral blood using the Aminco blood cell separator has even been proposed—although not tested through the transfusion stage. Using our method of mixture with 10% DMSO, controlled rate freezing, and storage in liquid nitrogen in small tubes, the recovery of CFU-GEMM has averaged 54%. The recovery of BFU-E and CFU-GM has been 63% and 64%. The latter are somewhat less than the 95.7% (range 67%–132%) recovery described by Körrling et al. for CFU-GM storage in 10% DMSO. It is possible that better stem cell yields can be achieved if the cells are stored in bags. This would allow more immediate dilution upon thawing, either with protein and heparin containing media for in vitro studies or with the recipient’s blood in vivo.

The “T-cell” lymphocyte population collection efficiency for the MNC products approximated both the “B-cell” and the lymphocyte collection efficiency. Knowledge of these relative efficiencies may be helpful in the future prevention of graft-versus-host disease (GVHD) in the case of allogeneic reconstitution. Recent work has demonstrated that treatment of mouse cells with monoclonal antibody directed against T lymphocytes (anti-Thy) and complement can be used to treat a mouse marrow and lymphocyte inocu-
lum to prevent graft-versus-host disease across major
to minor histocompatibility barriers. The stem cell
proliferative capability of the cells is not destroyed by
this treatment. Similar work involving rats also
supports the theory that the initial content of immunocom-
petent T lymphocytes in the BMT inoculum
determines the development of GVHD and suggests that
the lymphocyte population growing from the transplanted
stem cells becomes tolerant to the host. Thus, minimi-
ization of the numbers of T cells collected by future
manipulation of the collection procedure may help
prevent GVHD, and being aware of the relative lym-
phocyte subpopulation numbers collected will aid in
possible immunologic treatment of the MNC concen-
trates before infusion.

The use of the CS3000 microcomputer-controlled
blood cell separator offers several advantages over
other cytapheresis devices for the collection of peripheral
stem cells. The computer control allows reproduc-
ibility from donor to donor, since the same program
can be used for each one. Operator variation in identifica-
tion of the buffy coat layer is eliminated. Separation
and collection chambers can be changed easily and
reproducibly to maximize cell yields. The system,
unlike any previously introduced, has the potential to
be completely closed, since there is no rotating seal.
This would vastly decrease the potential for bacterial
or viral contamination, a very important feature when
considering injection into immunocompromised recipi-
ents.

This study demonstrates the presence of pluripo-
tential stem cells in large quantity in cytapheresis prod-
ucts collected from normal donors. We show that these
cells can successfully be stored in liquid nitrogen using
DMSO as a cryoprotectant. Further studies that lead
to maximization of the stem cell yield, that document
the viability of the cells when stored in plastic bags,
and that explore ways to increase the yield of stem cells
are necessary before complete hematopoietic recon-
stitution using these cells can and should be tried in
humans.

ACKNOWLEDGMENT

The authors wish to thank the staff of the University of Minnesota
Leukapheresis Unit, especially Judy Smith; the staff of the Univer-
sity of Minnesota Blood Bank’s Bone Marrow Freezing Laboratory,
especially Dr. Phyllis Warkentin; that of the University’s Cell
Marker Laboratory; and Kathleen Kuha and Maria McGinnis, all
for their expert technical assistance.

REFERENCES

1. Nguyen BT, Perkins HA: Quantitation of granulocyte-macro-
phage progenitor cells (CFU-C) in plateletpheresis and leukaphere-
sis concentrates. Blood Trans Inf Hematol 5:489, 1979
2. Richman CM, Weiner RS, Yankee RA: Procurement of stem
(letter)
Procurement of human blood stem cells by continuous-flow centri-
figuration—further comment. Blood 50:753, 1977 (letter)
4. Appelbaum FR: Hematopoietic reconstitution following auto-
logous bone marrow and peripheral blood mononuclear cell infu-
sions. Exp Hematol 7:7, 1979
5. Hershko C, Ho WG, Gale RP, Cline JJ: Cure of aplastic
anemia in paroxysmal nocturnal hemoglobinuria by marrow trans-
fusion from identical twin: Failure of peripheral-leukocyte transfu-
sion to correct marrow aplasia. Lancet 1:945, 1979
6. Abrams RA, Glubrecht D, Appelbaum FR, Deisseroth AB:
Result of attempted hematopoietic reconstitution using isologous,
peripheral blood mononuclear cells: A case report. Blood 56:516,
1980
7. Fauser AA, Messner HA: Identification of megakaryocytes,
macrophages, and eosinophils in colonies of human bone marrow
containing neutrophilic granulocytes and erythroblasts. Blood
53:1023, 1979
8. Fauser AA, Messner HA: Granulocrythropoietic colonies in
human bone marrow, peripheral blood, and cord blood. Blood
52:1243, 1978
Isolation, cryopreservation and autotransplantation of human stem
cells. Exp Hematol 7:12, 1979
10. Warkentin P, Ramsey NKC, McCullough J: Effect of proce-
dural variations on in vitro viability of cryopreserved human
bone marrow. Transfusion 20:640, 1980 (abstr)
11. Korbling M, Fiedner TM, Ruber E, Pfleger H: Description
of a closed plastic bag system for the collection and cryopreserva-
tion of leukapheresis-derived blood mononuclear leukocytes and CFU-
c from human donors. Transfusion 20:293, 1980
RH: Platelet pheresis with the Fenwal CS3000 blood cell separator.
Transfusion 19:665, 1979 (abstr)
McCullough J: Developmental studies of granulocyte collection
using the Fenwall CS 3000 Blood Cell Separator. Transfusion
20:638, 1980 (abstr)
14. Fenwal CS 3000 Blood Cell Separator Operators Manual,
Fenwal Laboratories, Dearfield, III, October 1979
15. Ross GD, Winchester RJ: Methods for enumerating lympho-
cyte populations, in Rose NR, Friedman H (ed): Manual of Clinical
Immunology (ed 2). Washington DC, American Society for Micro-
biology, 1980, p 213
16. Abramson CS, Kersey JH, LeBien TW: A monoclonal anti-
body (BA-1) reactive with cells of the human B lymphocyte lineage.
J Immunol 126:83, 1980
17. Kung PC, Goldstein G, Reinherz EL, Schlossman S: Mono-
clonal antibodies defining distinctive human T-cell surface antigens.
Science 206:347, 1979
18. Ortho monoclonal antibodies against human T lympho-
19. Ritz J, Pesando JM, McConathy JN, Lazarus H, Scholos-
man S: A monoclonal antibody to human acute lymphoblastic
20. Kersey JH, LeBien TW, Abramson CS, Newman R, Suther-
land R, Greaves M: p 24: A human leukemia-associated and
lymphohemopoietic progenitor cell surface structure identified with
21. Ash RC, Detrick RA, Zanjani ED: Studies of human pluripo-
Collection of pluripotential hematopoietic stem cells by cytapheresis

LC Lasky, RC Ash, JH Kersey, ED Zanjani and J McCullough