Translocation 4;11 in Acute Lymphoblastic Leukemia:
Clinical Characteristics and Prognostic Significance

By Diane C. Arthur, Clara D. Bloomfield, Leanna L. Lindquist, and Mark E. Nesbit, Jr.

Banded bone marrow chromosome analyses have been done on 83 unselected patients with acute lymphoblastic leukemia (ALL). Seven patients, all with non-T, non-B ALL, had a translocation involving the long arms of chromosomes 4 and 11. Five of these patients, 4 children and 1 adult, were first studied at diagnosis, and the t(4;11) (q21;q23) was the only karyotypic abnormality. All 5 presented with a marked leukocytosis (>150 x 10^9/liter). Four of these 5 patients achieved a complete remission following the same intensive treatment regimen; however, remission duration and survival were very short (medians 2.5 and 8 mo. respectively). The fifth patient is currently receiving induction chemotherapy. The remaining 2 patients, both adults, were studied in relapse only, and had other karyotypic abnormalities in addition to the t(4;11). One of these relapse patients was a female whose clinical presentation and course were similar to those above. The last patient was a male who presented with a leukocyte count of 7 x 10^9/liter and maintained an initial complete remission for 37 mo. Our data suggest that patients who have a t(4;11) (q21;q23) at the time of diagnosis of ALL have a poor prognosis with conventional therapy and require a new therapeutic approach.

BANDED BONE MARROW chromosome studies have been done with considerable success in acute nonlymphocytic leukemia (ANLL). Distinct nonrandom karyotypic abnormalities have been identified and correlated with particular subtypes of ANLL and prognosis. Technical difficulties with short fuzzy chromatids and lack of clear bands have hampered such studies in acute lymphoblastic leukemia (ALL). Few nonrandom structural abnormalities have been identified in ALL and, with the exception of the Philadelphia chromosome, their relationship to prognosis is unknown. One structural rearrangement thus far found exclusively in patients with ALL is a translocation involving the long arms of chromosomes 4 and 11. A total of 8 patients with this anomaly have been reported. In this article we present 7 additional cases of the t(4;11) and describe the clinical characteristics and prognosis of this subgroup of ALL patients.

MATERIALS AND METHODS

Cytogenetic Studies

Bone marrow cells were obtained from heparinized posterior iliac crest aspirates, and the specimens were processed within 30 min of aspiration. Both direct preparations and 24-h cultures were done in

From the Departments of Laboratory Medicine and Pathology, Pediatrics, and Medicine, University of Minnesota Health Sciences Center, Minneapolis, Minn.

Supported in part by Grant CA-07306 from the National Cancer Institute of the United States Public Health Service, the Masonic Hospital Fund, Inc., the Minnesota Medical Foundation, and the Coleman Leukemia Research Fund.

Submitted June 3, 1981; accepted September 9, 1981.

Address reprint requests to Diane C. Arthur, M.D., University of Minnesota Hospitals, Box 151 Mayo Memorial Building, Minneapolis, Minn. 55455.

© 1982 by Grune & Stratton, Inc.
0006-4971/82/5901-0015$01.00/0

Blood, Vol. 59, No. 1 (January), 1982
Table 1. Clinical Characteristics at Diagnosis, Response to Therapy, and Cytogenetic Studies

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age</th>
<th>WBC (x 10⁹/liter)</th>
<th>Duration of Initial Remission (mo)</th>
<th>Survival (mo)</th>
<th>Time of Study</th>
<th>Number of Cells Examined</th>
<th>Banded Karyotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>8 wk</td>
<td>574</td>
<td>3</td>
<td>5</td>
<td>Diagnosis</td>
<td>3</td>
<td>46,XX (q21;q23)</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>15 yr</td>
<td>572</td>
<td>-</td>
<td>½ +</td>
<td>Diagnosis</td>
<td>10</td>
<td>46,XX, t(4;11)(q21;q23).del(17)(p11)</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>11 yr</td>
<td>449</td>
<td>2</td>
<td>16</td>
<td>Diagnosis</td>
<td>11</td>
<td>46,XX (q21;q23)</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>30 yr</td>
<td>283</td>
<td>2+</td>
<td>3+</td>
<td>Diagnosis</td>
<td>25</td>
<td>46,XX, t(4;11)(q21;q23)</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>16 mo</td>
<td>151</td>
<td>8</td>
<td>11</td>
<td>Diagnosis</td>
<td>20</td>
<td>46,XX, t(4;11)(q21;q23)</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>31 yr</td>
<td>50</td>
<td>1</td>
<td>10</td>
<td>Relapse</td>
<td>18</td>
<td>46,XX, t(4;11)(q21;q23).i(Xq)</td>
</tr>
</tbody>
</table>

Induction of remission was difficult in patient 6, requiring 2 courses of cytarabine and Adriamycin followed by 2 courses of vincristine, prednisone, cyclophosphamide and, in the fourth course, l-asparaginase. Central nervous system therapy as above was followed by maintenance chemotherapy with vincristine, prednisone, 6-mercaptopurine, and methotrexate. Marrow transplantation was performed at first remission, but a sustained remission was not achieved.

Patient 7 was induced into remission with vincristine and prednisone, and maintained for 37 mo with 6-mercaptopurine, methotrexate, vincristine, prednisone, and cyclophosphamide. He survived only 4 mo after bone marrow relapse.

Patient 2 has just been diagnosed and begun on induction chemotherapy with vincristine, prednisone, and l-asparaginase. Because of the poor results in the previous 6 patients, he will receive a different, more intensive regimen of consolidation and maintenance chemotherapy.

RESULTS

Cytogenetic Studies

The results of the cytogenetic studies are summarized in Table 1. Patients 1-5 were first studied at diagnosis, and at that time the modal chromosome number was 46 and the t(4;11) (q21;q23) the sole karyotypic abnormality (Fig. 1). Remission marrow specimens were received from patients 3 and 5 only; both showed a reversion to a normal karyotype. Patient 1 developed a second chromosome abnormality at relapse, del(17)(p11), whereas patient 3 showed no evidence of clonal evolution through 2 relapses.

Patients 6 and 7 were studied only once, in relapse after therapy. Both showed abnormalities in addition to the t(4;11). The deleted number 4 chromosome in many of the cells of case 7 appeared less metacentric than that of the other patients. It is possible that the break point was closer to the centromere than q21, but banding was not clear enough to confirm this.

Patients

Partial clinical data are included in Table 1. Five of the patients were females and 2 were males, ranging in age from 8 wk to 31 yr (median 15 yr). All but case 7 presented with marked leukocytosis (7-574 x 10⁹/liter; median 283 x 10⁹/liter). All 7 patients had moderate anemia at diagnosis (Hb 6.4-9.3 g/dl; median 8.4 g/dl), but thrombocytopenia (<100 x 10⁹/liter) ws present in only 4 patients. Splenomegaly was noted in all 7 patients, lymphadenopathy in...
3, hepatomegaly in 2, and central nervous system involvement in only 1 (case 1) at diagnosis. None of the patients had a mediastinal mass. Lymphocyte surface marker analysis showed all 7 patients had non-T, non-B ALL.

Complete remission was achieved in all cases except patient 2, who has just recently begun induction; however, patient 7 was the only one who sustained this remission. Duration of initial remission in the other 5 cases ranged from 1 to 8 mo with a median of 2.5 mo. Patients 2 and 4 are the only survivors at present. The other patients died from their leukemia 5–41 mo after diagnosis (median survival 11 mo).

DISCUSSION

We have analyzed banded bone marrow chromosomes from 83 unselected patients with ALL and have identified 7 patients who had a translocation between the long arms of chromosomes 4 and 11. The first case in which banding allowed for positive identification of the t(4;11) in ALL was described by Oshimura et al. in 1977. Since that time 7 additional cases have been reported in the literature. To date, this translocation has not been found in other acute leukemias or lymphoproliferative disorders.

Including our 7 cases and the 8 from the literature, this translocation was found over a wide age range (4 days to 46 yr) in 8 children (<16 yr) and 7 adults (≥16 yr). The fact that 6 of the 8 children were ≤16 mo of age suggests that the t(4;11) may be an important finding in cases of congenital ALL; however, it is not restricted to such cases. Ten of these patients were females and 5 were males. All 7 of our patients and the 1 case from the literature on whom surface marker analysis was performed had non-T, non-B ALL.

Five of our cases and 7 from the literature were studied first at diagnosis. All 12 patients presented with marked leukocytosis (60–688 × 10⁹/liter; median 310 × 10⁹/liter). Moderate anemia and splenomegaly were constant features in our patients. The t(4;11) was the sole karyotypic abnormality seen in 11 of these cases. The 12th patient had 2 abnormal clones: 1 with the t(4;11) only, and a second with the t(4;11) plus additional chromosomes. The break points in the 9 patients studied with G-banding were q21;q23. Van den Berghe noted break points q13;q22 in his 3 cases who were studied using the R-banding technique. Two of our patients and 1 from the literature were analyzed sequentially, and 2 of these 3 showed karyotypic evolution over time.

Two of our patients and one from the literature were first studied after treatment, and all of them showed karyotypic abnormalities, both numerical and structural, in addition to the t(4;11). It is interesting to note that the two patients who had low peripheral leukocyte counts (4 and 7 × 10⁹/liter) were in this posttreatment group. The numbers are too small and the other abnormalities too varied to draw any conclusions about treatment-induced anomalies or clonal evolution at this time.

Six of our 7 patients and 2 of the 7 evaluable patients from the literature achieved an initial complete remission using conventional chemotherapy; however, the duration of first remission was very short (<8 mo) in all but our case 7. Survival of this group as a whole has been dismal. In the 8 previously reported cases, survival ranged from 48 hr to 7 mo (median 3 mo). Four of our patients were dead from their leukemia by 16 mo after diagnosis despite aggressive chemotherapeutic treatment in all cases and allelic bone marrow transplantation in cases 3 and 6. Treatment given to our cases 1, 3, 4, and 5 was identical to that recently reported by the Childrens Cancer Study Group. Greater than 50% of poor prognosis patients treated in this fashion are surviving disease-free 5 yr after diagnosis. The only long-term survivor among the t(4;11) subgroup of ALL thus far is our case 7, who presents a problem in that he was not studied at diagnosis, and banding was not clear enough to definitely assign the q21 break point on chromosome 4.

Our data confirm and extend those from the literature suggesting that the t(4;11)(q21;q23) is a significant and specific karyotypic abnormality found in a subgroup of patients with non-T, non-B ALL. Patients with this anomaly at diagnosis present acutely with anemia, marked leukocytosis, and splenomegaly. The prognosis of these patients with optimal conventional chemotherapy is very poor, and an alternative approach to treatment appears indicated.

With further refinement of banding techniques other such subgroups of ALL will likely be uncovered. Correlation of the cytogenetic findings with more advanced histologic and immunologic studies, such as electron microscopy and monoclonal antibodies, will be important.

REFERENCES

3. Cimino MC, Rowley JD, Kinnealey A, Variakojis D, Golomb
Translocation 4; 11 in acute lymphoblastic leukemia: clinical characteristics and prognostic significance

DC Arthur, CD Bloomfield, LL Lindquist and ME Jr Nesbit