Chemotactic Factor Enhancement of Superoxide Release From Fluoride and Phorbol Myristate Acetate Stimulated Neutrophils

By Denis English, James S. Roloff, and John N. Lukens

Human neutrophils exposed to chemotactic concentrations of zymosan-activated serum (ZAS) and a formylated chemotactic peptide (FMLP, 10⁻¹⁰⁻¹⁰⁻⁶ M) were markedly enhanced in their ability to generate superoxide (O₂⁻) upon stimulation with either sodium fluoride or phorbol myristate acetate (PMA). For both fluoride and PMA, enhancement was characterized by a decrease in the lag from stimulation to initiation of superoxide release and by an increase in the rate of superoxide generation—representing faster activation and increased activity of the O₂⁻ generating enzyme, respectively. Chemotactic concentrations of casein, normal serum, and casein-treated serum enhanced the activity, but not the rate of activation, of the fluoride-stimulated superoxide generating system. This effect on activity was not so impressive as that obtained with FMLP or ZAS. The mechanisms by which FMLP enhanced responsiveness to fluoride and PMA were found to be different. Optimal enhancement for fluoride-stimulated responses required extracellular Ca²⁺. Extracellular glucose, but not extracellular Ca²⁺, was required for enhancement of FMLP of PMA-stimulated responses. A similar glucose requirement could not be demonstrated for chemotactic peptide enhancement of the superoxide-generating system stimulated by fluoride. Fluoride and PMA apparently activate the neutrophil O₂⁻ generating enzyme by pathways that are not identical. However, responsiveness of the enzyme to both agents is susceptible to modulation by cellular responses to chemotactic peptides.

TO REACH SITES of infection and inflammation, polymorphonuclear leukocytes pass through concentration gradients of chemoattractants. That the initial encounter of neutrophils with chemotactic factors may prime their responsiveness to stimuli they will reach at the distal end of the gradient is suggested by several observations. Allred and Hill1 as well as Van Epps and Garcia2 observed an enhancement by chemoattractants of phagocytically stimulated neutrophil chemiluminescence. McCall et al.3 reported that pretreatment of neutrophils with 10⁻⁸ M n-formylmethionyl-leucyl-phenylalaine (FMLP), a synthetic chemoattractant, enhanced subsequent superoxide release stimulated by phagocytosis. Van Epps and Garcia2 observed that chemoattractants enhanced phagocytically stimulated superoxide release, phorbol myristate acetate (PMA) induced chemiluminescence, and neutrophil bactericidal activity. Issekutz et al.4 also reported that preincubation of neutrophils with chemoattractants markedly amplified the cells' subsequent bactericidal potential.

The present report demonstrates that the responsiveness of the human neutrophil superoxide-generating system to PMA as well as to sodium fluoride (F⁻) is markedly enhanced by pretreatment of the cells with certain chemotactic factors. To extend these findings, we investigated the influence of chemoattractants on both the activity of the superoxide-generating enzyme and on the rate of enzyme activation. Our observations indicate that chemoattractants potentially influence both the activity and activation of the enzyme, and do so through separate and independently controlled cellular mechanisms.

MATERIALS AND METHODS

Ferricytochrome-c, FMLP, Ficoll-Hypaque (Histopaque), ammonium chloride, zymosan, and dimethyl sulfoxide (DMSO) were obtained from Sigma Chemical Co., St. Louis, Mo.; phorbol myristate acetate was from Consolidated Midland, Brewster, N.Y.; sodium fluoride, casein, dextrose, and sodium chloride were from Fisher Scientific, Pittsburgh, Pa.; Hanks’ balanced salt solution (BSS, no phenol red, Ca²⁺ = 1.0 mM; glucose = 1 mg/ml) was from Gibco, Grand Island, N.Y.; and beef lung heparin was from Upjohn, Kalamazoo, Mich. Superoxide dismutase was prepared from beef liver using the method of McCord and Fridovich.5

PMA and FMLP were dissolved in DMSO at a concentration of 10 mg/ml. They were further diluted in phosphate-buffered saline (PBS, pH 7.4) prior to use. Casein was dissolved in alkaline BSS at a concentration of 5 mg/ml and subsequently diluted in BSS, pH 7.4.

Polymorphonuclear leukocytes (neutrophils) were prepared from heparinized human blood using Ficoll-Hypaque density gradient centrifugation followed by ammonium chloride lysis of erythrocytes, as previously described.6 Experiments reported here have been repeated using cells obtained by a single step density gradient in which neither lysis nor enhanced sedimentation is required,7 and the results have been the same. Neutrophils were suspended at a concentration of 1.5 x 10⁸/ml, unless otherwise indicated.

Serum was prepared from fresh blood by centrifugation. Zymosan-activated serum (ZAS) and casein-activated serum (CAS) were prepared by incubating fresh serum with 10 mg/ml of zymosan or casein at 37°C for 30 min.

The superoxide released from stimulated neutrophils was recorded by continuous assay using a system similar to that established by Cohen and Chovanec8 as modified by Newburger et al.9 Glass cuvettes (1 cm x 1 cm) contained, at 37°C, 1.5 x 10⁸ neutrophils, 0.2 mM ferricytochrome-c, and additional reagents as

From the Division of Hematology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn.

Supported in part by the American Cancer Society Institutional Support Grant IN-255; by the National Institute of Health Grants AM-18281-05 and AM-07186-11; and by Vanderbilt’s Biomedical Research Support Grant USPHS RR-15342.

Submitted November 25, 1980; accepted March 12, 1981.

Address reprint requests to Denis English, Ph.D., Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn. 37232.

© 1981 by Grune & Stratton, Inc.

0006-4971/81/5801-0018$01.00/0
indicated in a volume of 1.20 ml. The buffer used was BSS, unless otherwise indicated, and the temperature was maintained at 37°C. After equilibration for 5 min or after preincubation with chemoattractants for 5 min under the stated set of conditions, 50 µl of PMA or F- were added to achieve a final concentration of 100 ng/ml or 20 mM respectively. Reduction of cytochrome-c by O2- was continuously recorded at 550 nm using a Gilson 550 single beam spectrophotometer (slit width, 0.1 mm). The time (sec) after stimulation at which perceptible cytochrome-c reduction commenced was taken as the activation time, and the rate of reduction (after activation) taken as the activity of the O2- -generating system according to the equation:

\[RATE = \frac{\text{change in absorbance/min} \times 1000}{1.5 \times 10^6 \text{ neutrophils/20 min}} \]

where \(\text{change in absorbance/min} \) is determined by methods similar to those described by Repine et al. and by Weening. Neutrophils 3 x 107/ml BSS) were incubated with 25 µCi 1-14C-glucose (New England Nuclear, Boston Mass.) for 2 hr at room temperature. One-half milliliter of the cell suspension was added to 2.5 ml of BSS at 37°C in a 20 ml liquid scintillation counting vial that contained a separate inner vial filled with 0.8 ml hydroxide of Hyamine. In some experiments, leukocytes were preincubated for 5 min with 2 x 10^{-5} M FMLP after calibration with labeled glucose and prior to addition to the scintillation vials. Chemotactic peptide preincubated cells and cells not preexposed to chemotactic peptide were then stimulated with PMA (100 ng/ml) or FMLP (2 x 10^{-8} M). The scintillation vials were then sealed and incubated at 37°C for 20 min. Metabolic reactions were terminated by placing the vials in melting ice. Vials were left on ice for 4 hr to allow absorption of liberated 14CO2 by Hyamine hydroxide. The Hyamine was then dissolved in 10 ml of scintillation fluid (PPO-POPOP-toluene) and counted in a liquid scintillation counter. Results are expressed as mean counts per minute (cpm)/1.5 x 10^6 neutrophils/20 min. Determinations were made in triplicate using neutrophils from a single individual. A second experiment with neutrophils from a different donor gave qualitatively similar results.

RESULTS

Figure 1 is a tracing of the spectrophotometric recording of cytochrome-c reduction by F- -stimulated neutrophils. The experiment shows the effect of preincubation with FMLP on subsequent oxidative responsiveness to F-. The chemotactic peptide enhanced the cells’ capacity to generate O2- by exerting an influence on both the activation (time from stimulation to O2- release) and the activity of the F- -stimulated O2- -generating system. The concentrations of FMLP were lower than those necessary to effectively activate the O2- -generating enzyme, but were chemotactic in the presence of albumin. Chemotactic activity of FMLP was optimal at approximately 10^{-7} M, while >1.0 x 10^{-4} M FMLP was required for stimulation of oxidative metabolism.

Preincubation of neutrophils with low concentrations of ZAS also rendered them more responsive to F-. Both activation and activity of the F- -stimulated O2- -generating system were enhanced by ZAS in a dose-dependent manner (Fig. 2). Different preparations of ZAS held variable enhancing activity with respect to the amount necessary to cause an effect.
were determined as noted in the legend to Fig. 1. Then challenged with 20 mM NaF. Activation time and activity were determined for 5 min with the indicated concentration of ZAS and incubated for 5 min with each chemotactic peptide to obtain optimal enhancement at a concentration of 8%. The weakest preparation gave optimal enhancement at a concentration of 6.8%. The amount required for optimal enhancement ranged from 15 to 80 μl/ml. Solutions of ZAS of >2.5% were chemotactic. No attempt was made to correlate the amount of ZAS required for enhancement with the chemotactic potency of individual preparations.

While complement-derived chemotactants and FMLP at relatively high concentrations stimulate leukocyte
O₂ - generation, 12,13 the chemotactant casein and normal serum do not. 14 Previous reports have also indicated that CAS holds at least as much chemotactic activity for human neutrophils as ZAS. 15,16 Further, while low (chemotactic) concentrations of FMLP and ZAS desensitize the neutrophils’ ability to generate
O₂ upon exposure to 2.5 x 10⁻⁷ M FMLP, chemotactic concentrations of CAS, casein, and normal serum do not. 14 It was of interest, therefore, to determine the influence of casein, CAS, and normal serum on the responsiveness of the superoxide-generating system stimulated by F⁻. Although each enhanced the rate of superoxide release (Table 1), the effect was less than that observed with FMLP or ZAS. Unlike FMLP and ZAS, casein, CAS, and normal serum did not alter the activation time of the
O₂ - generating system in response to stimulation by F⁻.

At concentrations lower than those necessary to initiate oxidative metabolism, FMLP induces pronounced alterations in the membrane flux of calci-

Table 1. Effect of Casein, CAS, Normal Serum (NS), and ZAS* on Activity and Activation of the
O₂ - Generating System Stimulated by F⁻

<table>
<thead>
<tr>
<th>Chemoattractant</th>
<th>Concentration</th>
<th>Activation Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>0.5 mg/ml</td>
<td>684</td>
<td>35</td>
</tr>
<tr>
<td>NS</td>
<td>50 μl/ml</td>
<td>663</td>
<td>48</td>
</tr>
<tr>
<td>NS</td>
<td>25 μl/ml</td>
<td>690</td>
<td>30</td>
</tr>
<tr>
<td>CAS</td>
<td>25 μl/ml</td>
<td>715</td>
<td>38</td>
</tr>
<tr>
<td>ZAS</td>
<td>25 μl/ml</td>
<td>345</td>
<td>63</td>
</tr>
<tr>
<td>FMLP</td>
<td>1.0 x 10⁻⁸ M</td>
<td>357</td>
<td>45</td>
</tr>
<tr>
<td>BSS</td>
<td>Control</td>
<td>696</td>
<td>20</td>
</tr>
</tbody>
</table>

*CAS, NS, and ZAS were prepared from serum of the same blood sample and tested on the same day.
†Neutrophils were preincubated for 5 min at 37°C with each chemoattractant or BSS prior to stimulation with 20 mM NaF.
‡Time (sec) from addition of F⁻ to initiation of
O₂ release. Average of triplicate determinations. Maximum error (coefficient of variation) was ±6.8%.
§Rate of
O₂ release is the Δ absorbance/min (x 1000). Average of three determinations. Maximum error – 8.6%.

um, 17 a cation necessary for fluoride activation of the neutrophil
O₂ -generating enzyme. 18 We therefore investigated the role of
Ca²⁺ in enhancement. As previously noted, 18 cells prepared in Ca²⁺-free PBS generated very little
O₂ upon stimulation with 20 mM F⁻. If cells in Ca²⁺-free media were pretreated with 10⁻⁸ M FMLP, considerable
O₂ generation occurred upon stimulation with F⁻ (Fig. 3). The activation time of these cells was only slightly shorter than that of cells not exposed to FMLP but suspended

![Fig. 2](https://example.com/f2.png)

Fig. 2. Enhancement by ZAS of activity and rate of activation of the F⁻-stimulated
O₂-generating system. Cuvettes were preincubated for 5 min with the indicated concentration of ZAS and then challenged with 20 mM NaF. Activation time and activity were determined as noted in the legend to Fig. 1. Results shown are those obtained with one preparation of ZAS. Similar experiments with 4 other preparations yielded variable results with respect to the concentration necessary to obtain optimal enhancement. At a concentration of 1.5% (v/v), the most potent preparation enhanced responsiveness in a manner similar to that obtained with 5.0% above. The weakest preparation gave optimal enhancement at a concentration of 8%.

![Fig. 3](https://example.com/f3.png)

Fig. 3. F⁻-stimulated
O₂-generating system by neutrophils in saline with or without added Ca²⁺ (0.5 mM) and FMLP (10⁻⁸ M). Unlike PMA, F⁻ does not initiate
O₂ release in the absence of extracellular Ca²⁺. If neutrophils are preincubated with chemoattractant, F⁻ can stimulate
O₂ release without added Ca²⁺. Addition of Ca²⁺ along with the chemotactic peptide renders the cells highly responsive to
F⁻ stimulation; these cells generated
O₂ after addition of F⁻ at a rate and with an activation time similar to neutrophils preincubated with FMLP in BSS (Fig. 1.)
in PBS containing Ca\(^{2+}\) (0.5 mM). These results indicate that the influence of FMLP on activation time of the \(O_2^-\)-generating system in response to F\(^-\) was most pronounced when extracellular Ca\(^{2+}\) was present. When Ca\(^{2+}\) (0.5 mM) was added to neutrophils suspended in PBS with FMLP, the activation time of the \(O_2^-\)-generating system stimulated by F\(^-\) was further shortened (Fig. 3). The activation time for these cells was similar to the activation time of cells exposed to FMLP in BSS (Fig. 1). The rate of \(O_2^-\) release from FMLP preexposed cells in response to F\(^-\) was slower for cells in PBS without Ca\(^{2+}\) than for those in PBS with 0.5 mM Ca\(^{2+}\). However, it was not possible to determine whether this was due to a failure of enhancement in Ca\(^{2+}\)-free media or to a failure of F\(^-\) to optimally activate the \(O_2^-\)-generating enzyme in the absence of extracellular Ca\(^{2+}\). The rate for cells in PBS containing Ca\(^{2+}\) was slightly less than that of cells in BSS. The activity of cells in PBS was not increased by adding glucose (1.0 mg/ml) prior to FMLP (data not shown).

Activation of neutrophil \(O_2^-\)-generating system by PMA does not require extracellular Ca\(^{2+}\); a fact we thought would permit investigation of the influence of extracellular Ca\(^{2+}\) on chemotactic enhancement of the activity of the \(O_2^-\)-generating system under conditions where omission of the cation would not compromise activation of the system. Similar to the results obtained with F\(^-\), neutrophils treated with FMLP in BSS were markedly activated in their capacity to generate \(O_2^-\) upon exposure to PMA (Table 2). This activation was reflected both by a decrease in the lag from stimulation to \(O_2^-\) release and by an increase in the rate of \(O_2^-\) release. The chemotactic peptide enhanced both the activity and activation of the \(O_2^-\)-generating system stimulated by PMA. Enhancement of PMA-stimulated activity did not occur if PBS was used in place of BSS. Unlike the results obtained with F\(^-\), however, addition of Ca\(^{2+}\) (0.5 mM) did not correct this defect. Enhancement did occur in Ca\(^{2+}\)-free PBS to which glucose was added at the concentration used in BSS (1.0 mg/ml, Table 2).

To address the possibility that the effect of FMLP on the \(O_2^-\)-generating system stimulated by PMA was merely a result of increased \(O_2^-\) release rather than increased production, neutrophil oxidative metabolism, as reflected by HMPS activity, was determined. At a concentration of \(2 \times 10^{-8} M\), FMLP caused very little release of \(^{14}CO_2\) from \(^{1-14}C\)-glucose as compared to values obtained with unstimulated neutrophils (unstimulated neutrophils, 1174 ± 84 cpm; FMLP-stimulated neutrophils 1371 ± 37 cpm). Neutrophils stimulated with 100 ng/ml PMA released 6551 ± 340 cpm of \(^{14}CO_2\). When neutrophils that had been preincubated with \(2 \times 10^{-8} M\) FMLP were stimulated with 100 ng/ml of PMA, a striking enhancement of oxidative metabolism initiated by PMA was noted. Chemotactic factor pretreated cells released 20,281 ± 1100 cpm of \(^{14}CO_2\). A similar result was noted when FMLP and PMA were added to the neutrophils simultaneously (20,253 ± 1138 cpm). It thus appears that the effect of chemotactants on neutrophil superoxide release is associated with an increased capacity of the cells to generate \(O_2^-\) from NADPH.

DISCUSSION

The continuous assay of neutrophil \(O_2^-\) release of Cohen and Chovaniec\(^8\) is a valuable method for the simultaneous determination of the rate of activation and the activity of the superoxide-generating system. This method has been used to identify processes in the pathway from stimulation to \(O_2^-\) release.\(^9\)\(^2\)\(^0\)\(^2\) That the stimulation of \(O_2^-\) release by different agents may be mediated by different mechanisms is suggested by the observation that extracellular Ca\(^{2+}\) is required for the oxidative activity induced by F\(^-\), but not for that

Table 2. Requirement of Extracellular Glucose for FMLP Enhancement of the Rate of Neutrophil \(O_2^-\) Release Stimulated by PMA

<table>
<thead>
<tr>
<th>Media*</th>
<th>Preincubation†</th>
<th>Activation Time‡ (sec)</th>
<th>Activity§ (Å A/min x 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSS</td>
<td>PBS</td>
<td>108 (102-114)</td>
<td>68 (50-85)</td>
</tr>
<tr>
<td>PBS</td>
<td>FMLP</td>
<td>54 (42-66)</td>
<td>141 (135-145)</td>
</tr>
<tr>
<td>PBS</td>
<td>PBS</td>
<td>111 (102-126)</td>
<td>59 (50-70)</td>
</tr>
<tr>
<td>PBS</td>
<td>FMLP</td>
<td>66 (54-78)</td>
<td>57 (40-75)</td>
</tr>
<tr>
<td>PBS + glucose</td>
<td>PBS</td>
<td>126 (114-138)</td>
<td>63 (55-70)</td>
</tr>
<tr>
<td>PBS + glucose</td>
<td>FMLP</td>
<td>51 (42-54)</td>
<td>143 (135-150)</td>
</tr>
</tbody>
</table>

*Neutrophils were prepared in PBS at a concentration of 1.5 x 10⁷/ml; 100 µl of neutrophils were added cuvettes containing 0.95 ml of BSS, PBS, or PBS + glucose.
†50 µl of PBS or FMLP in PBS were added to the cuvettes containing neutrophils in the indicated buffer and incubated for 5 min at 37°C prior to the addition of 100 ng/ml PMA.
‡Time from addition of PMA to initiation of \(O_2^-\) release; mean and (range) of 4 determinations.
§Rate of \(O_2^-\) release, average and range of 4 determinations.
The glucose concentration was 1.26 mg/ml.
Final concentration, 2 x 10⁻⁶ M.
induced by PMA. The two systems need not be vastly different. As indicated by the data of this report, the absolute requirement of extracellular \(\text{Ca}^{++} \) for activation of the \(\text{O}_2^- \)-generating system stimulated by \(\text{F}^- \) can be eliminated by pretreatment of neutrophils with FMLP.

Our study confirms previous observations that neutrophils exposed to chemotactic factors are enhanced in their responsiveness to oxidative stimulation by nonchemotactic agents. By continuously assaying \(\text{O}_2^- \) release, we have extended these findings to demonstrate an effect of the chemoattractants FMLP and ZAS on both the activity of the \(\text{O}_2^- \)-generating system and on its rate of activation. Our data suggest that the mechanism by which chemoattractants enhance the response triggered by \(\text{F}^- \) is not the same as that which results in enhanced responses to PMA. Thus, while enhancement of activity stimulated by PMA required extracellular glucose (but not \(\text{Ca}^{++} \)), extracellular glucose was not required for enhancement of activity stimulated by \(\text{F}^- \). Whereas chemotactic factor enhancement of activation in response to \(\text{F}^- \) was dependent on the presence of extracellular \(\text{Ca}^{++} \), chemotactic enhancement of activation in response to PMA was not. As many as four separate cellular mechanisms activated by chemotactic factors may result in enhanced oxidative responsiveness. These include a process dependent on extracellular \(\text{Ca}^{++} \) for enhanced activation of the \(\text{F}^- \)-stimulated system, a glucose-dependent process for enhanced activity of the PMA-stimulated system, and extracellular \(\text{Ca}^{++} \) and glucose independent processes for enhanced activity and activation of the \(\text{F}^- \) and PMA-stimulated systems, respectively. The finding that chemotactic concentrations of casein, CAS, and normal serum enhanced the activity but not the activation of the \(\text{O}_2^- \)-generating system stimulated by \(\text{F}^- \) can be taken as a further indication that separate and independently controlled processes underlie enhancement by chemoattractants of the activation and the activity of the neutrophil \(\text{O}_2^- \)-generating system.

The results of the experiments reported in Table 2 were obtained with 100 ng/ml PMA, a concentration that does not maximally activate neutrophil oxidative metabolism. In preliminary experiments, we observed, in confirmation of the results of Newburger et al., that 1 \(\mu \)g/ml PMA elicited maximal \(\text{O}_2^- \) release as reflected by both activation time and activity. We further observed that neutrophils preincubated with \(2 \times 10^{-8} \text{ M} \) FMLP displayed an enhanced response to 1 \(\mu \)g/ml of PMA. The results were qualitatively similar to those reported in Table 2; chemotactic factor activated cells responded to 1 \(\mu \)g/ml of PMA with a shorter activation time and enhanced rate of \(\text{O}_2^- \) release in comparison to cells not previously exposed to chemotactic factor. We chose the lower concentration of PMA to quantitate and characterize the phenomenon because the slower kinetics of the responses allowed more accurate evaluation of the spectrophotometric recordings.

In summary, these data support the hypothesis that neutrophils at sites of infection and inflammation are activated as a result of previous encounters with chemoattractants. The active state is characterized by an increased responsiveness of cells to stimuli of oxidative activation. Cells respond faster and with greater vigor upon stimulation. Investigation of the mechanism of enhancement demonstrates that at least two separate mechanisms can be involved, one dependent on extracellular glucose and one on \(\text{Ca}^{++} \). The role of chemotactic enhancement of oxidative metabolism in host defense remains to be established.

ACKNOWLEDGMENT

The authors gratefully acknowledge Pamela Morris and Pamala DePaul for excellent technical assistance and preparation of the manuscript, respectively.

REFERENCES

10. Repine JE, White JG, Clawson CC, Holmes BM: Effect of phorbol myristate acetate on the metabolism and ultrastructure of...

Chemotactic factor enhancement of superoxide release from fluoride and phorbol myristate acetate stimulated neutrophils

D English, JS Roloff and JN Lukens

Updated information and services can be found at: http://www.bloodjournal.org/content/58/1/129.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at: http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at: http://www.bloodjournal.org/site/subscriptions/index.xhtml