CONCISE REPORT

Inhibition of Adenosine Deaminase Activity Results in Cytotoxicity to T Lymphoblasts In Vivo

By Beverly S. Mitchell, Charles A. Koller, and Ruth Heyn

We have treated a patient with refractory T-cell acute lymphoblastic leukemia with 2'-deoxycoformycin, a potent inhibitor of the enzyme adenosine deaminase. Inhibition of adenosine deaminase activity resulted in (1) an abrupt rise in plasma deoxyadenosine, but not adenosine, concentrations; (2) accumulation of deoxyadenosine triphosphate by lymphoblasts; (3) inhibition of the enzyme S-adenosylhomocysteine hydrolase; and (4) rapid lysis of the leukemic cells. The patient died suddenly 3 days after therapy was discontinued, and postmortem examination revealed a complete absence of leukemic cells in all organs. Pharmacologic inhibition of adenosine deaminase activity can result in the lysis of T lymphoblasts in vivo, and this effect appears to be mediated by deoxyadenosine.

The patient was a 13-yr-old male who presented in October 1978, with a white blood count of 365,000/cumm (98% lymphoblasts) and a large anterior mediastinal mass. Surface marker studies on bone marrow lymphoblasts revealed 46% T cells. A complete remission was obtained with an induction regimen of prednisone, vincristine, and 1-asparaginase; prophylactic cranial irradiation (1800 rads) and intrathecal methotrexate were subsequently given. In May 1979, a testicular relapse occurred, and 86% T cells were present in a testicular biopsy. A marrow relapse was diagnosed in June and was followed by a rapidly rising peripheral lymphoblast count. The patient was then treated with vincristine and methotrexate, followed by 1-asparaginase. The white count fell to 1400, but within 3 days had risen to 284,000, 94% of which were lymphoblasts positive for T-cell surface markers. Leukapheresis was performed on two occasions prior to dCF administration, resulting in a reduction in the white count to 167,000/cumm. Leukapheresis was also performed on days 3–6 of therapy. Other medications at the time of this trial were prednisone (10 mg/day) and allopurinol (300 mg/day).

MATERIALS AND METHODS

Case Report

The patient was a 13-yr-old male who presented in October 1978, with a white blood count of 365,000/cumm (98% lymphoblasts) and a large anterior mediastinal mass. Surface marker studies on bone marrow lymphoblasts revealed 46% T cells. A complete remission was obtained with an induction regimen of prednisone, vincristine, and 1-asparaginase; prophylactic cranial irradiation (1800 rads) and intrathecal methotrexate were subsequently given. In May 1979, a testicular relapse occurred, and 86% T cells were present in a testicular biopsy. A marrow relapse was diagnosed in June and was followed by a rapidly rising peripheral lymphoblast count. The patient was then treated with vincristine and methotrexate, followed by 1-asparaginase. The white count fell to 1400, but within 3 days had risen to 284,000, 94% of which were lymphoblasts positive for T-cell surface markers. Leukapheresis was performed on two occasions prior to dCF administration, resulting in a reduction in the white count to 167,000/cumm. Leukapheresis was also performed on days 3–6 of therapy. Other medications at the time of this trial were prednisone (10 mg/day) and allopurinol (300 mg/day).

Source and Preparation of Drug

2'-Deoxycoformycin (Pentostatin) was obtained from the Parke-Davis division of Warner-Lambert, Detroit, Mich., after approval of our protocol by the Human Use Committee of the University of Michigan and by the Food and Drug Administration. Informed consent was given by the patient's parents. The drug was reconstituted in 100 ml D,W containing 10 meq NaHCO3 (pH 8.2).

Enzyme Assays

Lymphoblasts were separated from heparinized venous blood on a Ficoll-Hypaque gradient and were washed 3 times in cold 10 mM Tris-150 mM NaCl, pH 7.4 (buffer A), and once in 10 mM Tris-140 mM NH4Cl to remove contaminating red cells. Lymphoblasts were
RESULTS

Twenty-four hours after the first dose of 0.001 mg/kg (0.073 mg) dCF (Fig. 1A), red cell ADA activity had been inhibited by 97%, but the extremely high lymphoblast ADA activity was only inhibited by 20% (Fig. 1 B and C). Consequently, we escalated the dose of dCF on a daily basis until the lymphoblast ADA activity was completely inhibited. Deoxycoformycin was then discontinued. As long as residual lymphoblast ADA activity was present, plasma deoxyadenosine levels remained undetectable (<0.1 \(\mu M \)). Twenty-four hours after the inhibition of residual lymphoblast ADA activity, however, the plasma deoxyadenosine concentration rose abruptly from <0.1 \(\mu M \) to 50 \(\mu M \) and reached a peak value of 104 \(\mu M \) on day 7 (Fig. 2A).

The rise in plasma deoxyadenosine was paralleled by an increase in lymphoblast dATP levels from 18 to 460 pmole/10^6 cells (Fig. 2B) and by complete inhibi-
It has been postulated that the relatively high activity of deoxynucleoside kinase in lymphoid cells renders them uniquely susceptible to dATP accumulation, and hence to cell death, in the presence of increased circulating deoxyadenosine levels. It was thus hoped that an inhibitor of ADA might act as a “selective” chemotherapeutic agent for lymphoproliferative malignancies. The administration of dCF to six patients with acute lymphoblastic leukemia in England resulted in a partial response in two patients and rapid cell lysis and death in an additional patient with T-cell disease.

No biochemical parameters were monitored in this study. We have treated a patient with ALL without surface markers with this drug and did not obtain a clinical response, but lymphoblast dATP levels remained low. It is becoming apparent that a true understanding of the effects of ADA inhibition in lymphoid malignancies can only be achieved through a careful correlation of clinical and biochemical data.

Although the etiologies of the renal failure and unexpected death of our patient were not fully elucidated, these events do raise major concerns about the potential toxicity of pharmacologic inhibition of ADA activity for other organs. Preliminary results from phase I clinical trials in this country now indicate that both pulmonary and renal toxicity may be associated with the use of dCF. The biochemical basis of damage to nonlymphoid cells remains to be clarified.

One possibility is that very high plasma deoxyadenosine levels may cause a more generalized intracellular accumulation of dATP. Interference with the metabolism of S-adenosylhomocysteine or adenosine may also play a role. The documented response to dCF therapy in this patient should encourage further investigation into the use of this drug in refractory leukemias.

ACKNOWLEDGMENT

We thank Elizabeth Ashcraft for superb technical assistance and Janice Kaminska and Dr. Irving Fox for the S-adenosylhomocysteine hydrolase assays.

REFERENCES

Inhibition of adenosine deaminase activity results in cytotoxicity to T lymphoblasts in vivo

BS Mitchell, CA Koller and R Heyn