CONCISE REPORT

Differentiation of Human Leukemias in Response to 12-0-Tetradecanoylphorbol-13-Acetate In Vitro

By Luigi Pegoraro, Janet Abraham, Richard A. Cooper, Alessandro Levis, Beverly Lange, Pacifico Meo, and Giovanni Rovera

Leukemic cells from patients with acute myeloid leukemia underwent morphological, functional, and histochemical changes within 24–48 hr after treatment with 1.6 × 10⁻¹⁸ M 12-0-tetradecanoylphorbol-13-acetate (TPA). The changes included adhesion to the plastic substrate, a 4–6-fold increase in the number of phagocytic cells, and an increase in the number of alpha-naphthyl-acetate esterase (α-NAE) positive cells. In contrast, TPA treatment of cells from patients with acute lymphoblastic leukemia caused some aggregation of cells in suspension, but no changes in adhesion, phagocytosis, or α-NAE. Of the four cases of undifferentiated or unclassified leukemias studied, two failed to respond to TPA, one responded with a myeloid (adhesion) pattern, and one with a lymphoid (aggregation) pattern. These data suggest that leukemic myeloblasts retain the ability to express a variety of differentiated functions, and in some cases, it may be possible to use TPA as a tool to test the differentiative potential of undifferentiated human leukemias.

The most efficient phorbol diester in the modulation of differentiation of established leukemic cell lines is 12-0-tetradecanoylphorbol-13-acetate (TPA). At doses ranging from 10⁻⁵ to 10⁻¹⁰ M, TPA inhibits erythroid differentiation of Friend erythroleukemia cells¹⁻³ and myeloid differentiation of M₁ mouse myeloid leukemia cells,⁴ and it stimulates differentiation of cloned cell lines of Rauscher virus-induced mouse erythroleukemia.⁵

TPA has also been found to induce differentiation of the human promyelocytic leukemia cell line, HL-60, into macrophages.⁶⁻⁸ Similar results have been observed with certain clones of mouse myeloid leukemia.⁹ Macrophage differentiation has been characterized by the appearance of two acid phosphatase isoenzymes⁴ and of α-NAE,⁷ marker enzymes present in monocytic but not in myeloid cells,⁶⁰¹³ and by decreased activity of peroxidase¹ and chloroacetate esterase (Rovera, unpublished), two enzymes abundant in myeloid cells but with low or absent activity in monocytes. In addition, a series of changes has been induced with TPA that are characteristic of both mature granulocytes and monocytes/macrophages which, although not useful in defining a specific direction of differentiation, are indicative of the complex program of differentiation that TPA induces in myeloid leukemia cell lines. These include an increase in lysozyme activity,⁷⁻⁹ the arrest of cell proliferation,⁶⁷⁻⁹¹¹ adhesion to plastic surfaces,⁶⁷⁻⁹¹¹ phagocytosis and immunoerythropagocytosis,⁶⁻⁹⁻¹² and an increase in the number of C3 receptors.⁹

We questioned whether these effects of TPA were limited to leukemia cell lines in culture or whether they represented a more general response of leukemic cells in patients. Therefore, we examined the effects of TPA on cells obtained directly from the peripheral blood or bone marrow of patients with acute leukemia.

MATERIALS AND METHODS

Patient Population

Twenty-nine leukemic patients were studied, 23 of whom were studied at the time of diagnosis prior to any therapy, 3 at the time of relapse only, and 3 at diagnosis and subsequent relapse. Leukemias were diagnosed based on cell morphology and cytochemical staining and classified according to the French-American-British scheme.¹¹ The distribution of patients according to the morphological type of leukemia is shown in Table 1.

Leukocyte Preparation

Heparinized peripheral blood (20 ml) or bone marrow (1 ml) was obtained during routine diagnostic procedures. Only specimens containing at least 70% leukemic blasts were studied. Cells were diluted with RPMI-1640 medium, supplemented with 15% fetal bovine serum overlayed at 20°C on a cushion of 5 ml Ficoll-Hypaque,¹⁴ centrifugated at 1000 g for 30 min. The leukemic immature marrow cells and mononuclear cells present in the interface were washed once, plated on Falcon flasks at 1–5 × 10⁷ cells/ml, and incubated at 37°C with 5% CO₂ and humidity. TPA (from P. Borchert, Eden Prairie, Minn.) in acetone was added to the

From the Istituto di Medicina Interna, Universita di Torino, Italy, the Hematology-Oncology Section, Department of Medicine, University of Pennsylvania, Philadelphia, Pa., the Ospedale Maggiore S. Giovanni, Divisione Medicina E, Torino, Italy, the Division of Oncology, Children’s Hospital, Philadelphia, Pa., and the Wistar Institute of Anatomy and Biology, Philadelphia, Pa.

Supported in part by Grants AM-13441, CA-10815, CA-21124, and CA-23413 from the National Institutes of Health and a grant from the W.W. Smith Charitable Trust.

Submitted November 19, 1979; accepted January 3, 1980.

Address reprint requests to Richard A. Cooper, M.D., Hematology-Oncology Section, Department of Medicine, University of Pennsylvania, Philadelphia, Pa. 19104.

© 1980 by Grune & Stratton, Inc.

Blood, Vol. 55, No. 5 (May), 1980
Shaking. In all cases of acute myeloid leukemia, TPA treatment induced adhesion in a large fraction of the cell population. Seventy-seven percent (± 4.8%) of leukemic myeloblasts became adherent 24 hr after TPA treatment, in contrast to 21.2% (± 12.4%) in control cultures. The adherent cells were not detachable by shaking but could be detached by trypsinization for 15–30 min. In one case of myelomonocytic leukemia, and in one of two cases of promyelocytic leukemia, TPA treatment induced adhesion to an extent comparable to that observed in acute myeloblastic leukemia. In three cases of monocytic leukemia, adhesion was observed in untreated cells and was not increased by TPA treatment.

No response was obtained after TPA treatment in two of four cases of undifferentiated leukemia. In the other two cases, either adhesion or massive clumping associated with adhesion was observed. The latter case had originally been classified in one institution as myeloblastic and in another institution as lymphoblastic.

Phagocytosis

The percentage of phagocytic cells in untreated and TPA-treated leukemic cells is given in Table 2. Phagocytic activity was tested in about half of the cases examined for adhesion in response to TPA treatment: the number of cells with phagocytic activity was found to increase in all the cases in which adhesion increased. Lymphoblastic leukemias showed very low levels of phagocytosis, possibly due to contamination with other mononuclear cells. Phagocytosis was present in monocytic or myelomonocytic leukemias, in agreement with the report of Neuwirtova et al. After TPA treatment, it increased in both disorders, but more in the myelomonocytic leukemia. The number of phagocytic cells was very low in the two cases of undifferentiated leukemia, which showed massive clumping and adhesion (see previous section).

<table>
<thead>
<tr>
<th>Type of Leukemia</th>
<th>Number of Cases Tested</th>
<th>Untreated†</th>
<th>TPA-Treated†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloblastic</td>
<td>5</td>
<td>16.0 (± 7.1)</td>
<td>57.2 (± 2.2)</td>
</tr>
<tr>
<td>Promyelocytic</td>
<td>1</td>
<td>5.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Myelomonocytic</td>
<td>3</td>
<td>15.6 (± 4.8)</td>
<td>51.0 (± 12.3)</td>
</tr>
<tr>
<td>Monocytic</td>
<td>2</td>
<td>38.5</td>
<td>42.1</td>
</tr>
<tr>
<td>Lymphoblastic</td>
<td>8</td>
<td>4.1 (± 4.0)</td>
<td>4.6 (± 3.2)</td>
</tr>
<tr>
<td>Undifferentiated</td>
<td>3</td>
<td>5.5 (± 4.1)</td>
<td>2.5 (± 1.5)</td>
</tr>
</tbody>
</table>

†TPA (1.6 x 10^-8 M) was added to the beginning of the experiment. Phagocytosis was assayed, as described in Materials and Methods, 72 hr after the addition of TPA.

FIGURE 2. Percent of Phagocytic Cells After TPA Treatment*
after TPA treatment. Table 3 shows the data on bone of TPA-treated esterase activity and compares the enzymatic activities (a myeloid acetate esterase of cells containing naphthol ASD chloro-
percentage fraction to separation with the blast-cell enriched activity was high in untreated monocytic leukemia and remained unchanged after TPA treatment. The percentage of cells containing naphthol ASD chloroacetate esterase (a myeloid marker) always decreased after TPA treatment. Table 3 shows the data on esterase activity and compares the enzymatic activities of TPA-treated bone marrow of peripheral blood prior to separation with the blast-cell-enriched fraction separated on Ficoll-Hypaque.

Esterase Activity

In all cases of acute myeloblastic leukemia and myelomonocytic leukemia tested, the number of cells showing α-NAE activity (a marker of monocytic but not of myeloid elements) increased within 3 days after treatment with 1.6 × 10^4 M TPA. α-NAE activity was high in untreated monocytic leukemia and remained unchanged after TPA treatment. The percentage of cells containing naphthol ASD chloroacetate esterase (a myeloid marker) always decreased after TPA treatment. Table 3 shows the data on esterase activity and compares the enzymatic activities of TPA-treated bone marrow of peripheral blood prior to separation with the blast-cell-enriched fraction separated on Ficoll-Hypaque.

Other Changes

After TPA treatment, the cells of all types of acute nonlymphocytic leukemia showed a decrease in the nuclear:cytoplasmic ratio, a coarsening of chromatin, the disappearance of specific granulations, the appearance of cytoplasmic vacuoles, a rounding or indenting of the nucleus, and the permanence of a nucleolus.

The myeloid leukemic cells treated with TPA also showed a decrease in the number that stained positive in the Sudan Black and peroxidase reactions. Changes in PAS staining were observed in some cases, but without a well defined pattern. However, none of these changes were accompanied by morphologically recognizable differentiated granulocytes or monocytes. No morphological changes were found in TPA-treated lymphoblasts.

DISCUSSION

In this article, we report that in vitro treatment of human acute myeloid leukemia cells with TPA induces a number of morphological, functional, and histochemical changes within 72 hr characteristic of more differentiated cells. The effect of TPA is to drive cells in the direction of expressing the specific characteristics of monocytes and macrophages. Acute monocytic leukemia cells already display these characteristics, and little effect is seen with TPA in these cells. Lymphoblastic leukemia cells and some undifferentiated or unclassified leukemia cells do not undergo the series of changes seen with myeloid leukemia cells.

The effects of TPA on adhesion, phagocytosis, and specific staining observed in this study are similar to the effects observed with TPA in HL-60 cells. Preliminary results also indicate that TPA suppresses leukemic cell proliferation. All elements of the myeloid lineage, from the immature leukemic myeloblast to the more mature myelocyte, responded to TPA treatment in vitro. The effect of TAP on myeloid cells is not restricted to leukemic cells; we have some preliminary evidence that normal precursors also respond to TPA treatment. The cellular aggregation induced by TPA in several cases of lymphoblastic leukemia is similar to that reported to occur with TPA treatment of established lymphoblastoid cell lines.

We did not examine whether markers of mature lymphocytes were induced by TPA, and further studies are needed.

Some undifferentiated or unclassified leukemias respond to treatment with TPA by developing adhesiveness and phagocytic ability; others undergo clumping. This suggests that the response of unclassified leukemias to TPA may assist in cell classification and selection of therapy.

The major conclusion from our studies is that the effect of TPA on leukemic cells is not unique to established myeloid leukemia cell lines but is a property of the majority of myeloid leukemias as they occur in patients. It suggests that the inability of leukemic cells to further differentiate in vivo may represent a failure to receive or to correctly process the physiologic signals for differentiation.

<table>
<thead>
<tr>
<th>Type of Leukemia</th>
<th>Number of Cases Tested</th>
<th>Whole Bone Marrow or Peripheral Blood</th>
<th>Blast-Cell-Enriched Fraction</th>
<th>TPA-Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myeloblastic</td>
<td>5</td>
<td>3 (± 2)</td>
<td>6.8 (± 3.1)</td>
<td>50 (± 34)</td>
</tr>
<tr>
<td>Promyelocytic</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Myelomonocytic</td>
<td>3</td>
<td>28 (± 17)</td>
<td>24 (± 14)</td>
<td>64 (± 33)</td>
</tr>
<tr>
<td>Monocytic</td>
<td>3</td>
<td>77 (± 22)</td>
<td>83 (± 6)</td>
<td>80 (± 10)</td>
</tr>
<tr>
<td>Lymphoblastic</td>
<td>6</td>
<td>0.4 (± 0.5)</td>
<td>0.5 (± 0.4)</td>
<td>4 (± 0.2)</td>
</tr>
<tr>
<td>Undifferentiated</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Cells were kept in culture for 3 days with or without TPA prior to the histochemical assay.

*Percent of α-NAE-positive cells (mean and standard deviation).

†Percent of naphthol ASD chloracetate esterase-positive cells (mean and standard deviation).

Table 3. Esterase Activity

![Image](https://via.placeholder.com/150)

From www.bloodjournal.org by guest on November 9, 2017. For personal use only.
REFERENCES

NOTE ADDED IN PROOF

Two other cases of promyelocytic leukemia and one case of myeloblastic leukemia were found to be unresponsive to TPA treatment in vitro, thus confirming that sensitivity to TPA is not a constant finding in human myeloid leukemias.
Differentiation of human leukemias in response to 12-0-tetradecanoylphorbol-13-acetate in vitro

L Pegoraro, J Abrahm, RA Cooper, A Levis, B Lange, P Meo and G Rovera