Comparison of Factor VIII-Related von Willebrand Factor Proteins Prepared From Human Cryoprecipitate and Factor VIII Concentrate

By Mark Weinstein and Daniel Deykin

Both commercial factor VIII concentrate and cryoprecipitate have factor VIII coagulant activity and factor VIII antigen (VIIIIR:Ag), but the concentrate lacks the von Willebrand activity (VIIIIR:WF) found in the cryoprecipitate. In an effort to find a possible cause for this anomaly we compared the structures of VIIIIR:WF proteins responsible for the VIIIIR:Ag and VIIIIR:WF activities obtained from the two sources. Samples of cryoprecipitate and concentrate were chromatographed on agarose gel, and the resultant VIIIIR:WF protein-rich void volume fractions were analyzed by first-and second-dimension sodium dodecyl sulfate gel electrophoresis. Proteins were first separated on a 1.5% polyacrylamide-0.5% agarose gel and then reduced and electrophoresed into a 3% polyacrylamide-0.5% agarose gel. VIIIIR:WF protein from both cryoprecipitate and concentrate was multimeric, with polymers composed of $M_i = 2.4 \times 10^8$ subunits. However, the multimers of the VIIIIR:WF proteins from the two sources differed in average molecular weight and structure. Cryoprecipitate VIIIIR:WF multimers were predominantly in the molecular weight range above 5×10^5 and were uniformly separated from each other by increments of $M_i = 6.5 \times 10^5$. In contrast, concentrate VIIIIR:WF multimers were relatively smaller, predominantly in the molecular weight range from 1.4×10^5 to 5×10^5. The polymeric bands were separated from each other by spaces equivalent to approximately $M_i = 5 \times 10^5$ alternating with distances of $M_i = 2.5 \times 10^5$. These differences in molecular weight and structure are possible causes for the functional property demonstrated here that VIIIIR:WF protein from cryoprecipitate had 2.6 times more VIIIIR:WF activity per $M_i = 2.4 \times 10^8$ subunit than VIIIIR:WF protein from concentrate.

Factor VIII von Willebrand-related (VIIIIR:WF) protein is involved with optimal platelet adhesion to the subendothelium as well as transport and stabilization of factor VIII coagulant activity* (VIII:C). The antigenic properties (VIIIIR:Ag) of VIIIIR:WF protein and the ability of VIIIIR:WF protein to aggregate platelets in the presence of the antibiotic ristocetin have been used to quantitate the protein. Reduced levels or abnormal forms of VIIIIR:WF protein are associated with von Willebrand's disease. However, the relationship between

*Abbreviations for factor VIII activities include the following: VIII:C, factor VIII procoagulant activity; VIIIIR:WF protein, the major glycoprotein obtained when factor VIII is purified from plasma, having a subunit mass of 2.4×10^5; VIIIIR:Ag, antigenic determinants associated with VIIIIR:WF protein; VIIIIR:WF activity, the activity of factor VIII that supports ristocetin-induced platelet aggregation. Other abbreviations include the following: Clg, cold insoluble globulin; SDS, sodium dodecyl sulfate; PEG, polyethylene glycol; PMSF, phenylmethyl sulfonyl fluoride; KIU, kallikrein inhibitory unit; AHF, antihemophilic factor.

1. From the Department of Medicine, Boston Veterans Administration Medical Center, and the Department of Biochemistry, Boston University School of Medicine, Boston, Mass.
2. Submitted December 18, 1978; accepted February 8, 1979.
3. Supported by the Medical Research Service of the Veterans Administration and by Grant HL-22355 from the National Heart, Lung and Blood Institute.
4. Address reprint requests to Mark J. Weinstein, Ph.D., Research Building, Boston Veterans Administration Medical Center, 150 S. Huntington Avenue, Boston, Mass. 02130.
5. © 1979 by Grune & Stratton, Inc. 0006-4971/79/5306-0009$02.00/0
VIII:WF structure and function is not well understood, largely because of difficulties in purifying and examining the structure of this high-molecular-weight trace constituent of plasma.

It is generally agreed that VIII:WF protein from cryoprecipitate has a Mr > 10^6 and is composed of identical disulfide-linked subunits of Mr ≈ 2 × 10^5. Studies with porcine and human VIII:WF protein strongly suggest that the protein is a multimeric polymer. For example, Fass et al., working with porcine VIII:WF protein, observed polymeric aggregates with an estimated Mr as large as 20 × 10^6, and they hypothesized that these forms were composed of a basic repeating unit consisting of six to eight Mr = 2 × 10^5 subunits. The functional properties of these aggregates, at least in vitro, are not uniform: the larger multimers have a greater tendency to bind to platelets in the presence of ristocetin than the smaller ones. It is also apparent that the functional properties of VIII:WF protein in vivo are strongly dependent on purification procedures. Several investigators have reported that blood-bank-prepared cryoprecipitate corrects the prolonged bleeding time in patients with von Willebrand’s disease, whereas commercially produced factor VIII AHF concentrate does not. It has been suggested that this lack of activity is the result of proteolytic degradation of the larger VIII:WF protein aggregates during the purification process.

In the present study we examined the structure and molecular weight distribution of VIII:WF multimers obtained from cryoprecipitate and concentrate to further elucidate possible causes for their different functional properties. A first- and second-dimension SDS gel electrophoresis method was developed that proved useful in assessing the purity and molecular weight distribution of VIII:WF multimers prepared from the two sources. This procedure demonstrated that not only do VIII:WF multimers from factor VIII concentrate lack the higher-molecular-weight forms observed in VIII:WF protein from cryoprecipitate but also they have a different polymeric structure that yields a heterogeneous rather than homogeneous banding pattern on SDS gels.

MATERIALS AND METHODS

The following chemicals were purchased from the suppliers indicated: Al(OH)₃ gel (Amphojel without flavor) from Wyeth Laboratories; fatty-acid-free bovine albumin type F, Aprotinin, bentonite, and dithiothreitol from Sigma Chemical Co., St. Louis, Mo.; kaolin (acid-washed) from Fisher Scientific, Medford, Mass.; N,N'-methylenediacrylamide (ultrapure, electrophoresis grade), acrylamide, and N,N,N',N'-tetramethylenediamine (TEMED) from Polysciences, Warrington, Pa.; Sea Kem (ME) agarose, used for electrophoresis, from Marine Colloids, Rockland, Me.; dimethyl subenimidate from Pierce Chemical Co., Rockford, Ill.; SDS from British Drug House, Poole, England. All other chemicals were reagent grade. Column chromatographic medium included Agarose A-15m from Bio-Rad, Richmond, Calif. Lyophilized antihemophilic concentrates were obtained as gifts from Abbott Laboratories, South Pasadena, Calif., Armour Pharmaceutical Co., Phoenix, Ariz., Cutter Laboratories, Berkeley, Calif., Merieux Institute, Miami Fla., and Hyland Division Travenol Laboratories, Costa Mesa, Calif. Cryoprecipitate was obtained from the American Red Cross. Rabbit anti-VIII:Ag antisera was purchased from Behring Diagnostics, Sommerville, N.J. Human Clg was prepared by the method of Engvall and Ruoslahti. Myosin, used for an M, marker, was generously contributed by Dr. Renee Lu, Boston Bio Med Research Institute, Boston, Mass. Ristocetin was acquired from Bio/Data Corp., Horsham, Pa. Centrolex P, purchased from Central Soya, Chicago, Ill., was used as a platelet substitute in the VIII:C assay. Cylindrical SDS gels were formed and electrophoresed in glass tubes (0.5 cm ID × 12 cm) held in a Bio-Rad model 150 A gel apparatus. Slab gels were formed in a Bio-Rad model 220 slab gel device and run on the horizontal slab gel bed model 92-1 made by MRA.
COMPARISON OF VIII R:WF PROTEIN

A sheet of porous polyethylene 1/4 inch thick was obtained from Bell Art, Pequannock, N.J.

Quantitative Determination of Factor VIII Activities

The assay for VIII:C was carried out by a previously described method modified by adding the sample to be tested to the kaolin-phospholipid-hemophiliac plasma mixture just prior to the addition of CaCl₂.

The quantity of VIII:WF activity was determined by aggregation of washed formaldehyde-fixed platelets in the presence of nistocetin. Each assay was performed at 37°C by adding 0.1 ml of sample to 0.375 ml of washed platelets (3 X 10⁸ platelets/ml) 0.025-M TRIS-HCl-0.125-M NaCl-0.02% NaN₃, pH 7.3), incubating the mixture for 3 min, and adding 25 µl of solution containing 25 g of nistocetin per liter of TRIS-saline buffer. A blank containing 0.2 ml of platelets in 0.3 ml of TRIS buffer was used in the aggregometer. A standard reference curve was constructed on log-log paper by plotting the slope of the platelet aggregation curve, obtained from serial dilutions of normal pooled plasma in TRIS buffer, versus the percentage of plasma in the dilution.

Quantitative electroimmunoassays and crossed immunoelectrophoresis studies were performed by the methods used by Over et al.

The relative amounts of VIII:WF protein in cryoprecipitate and concentrate were also assessed by two-stage SDS gel electrophoresis.

Comparison of VIII R:WF Protein Obtained From Cryoprecipitate and Concentrate

Samples of cryoprecipitate were prepared by mixing a solution of 6 ml of veronal buffered saline, pH 7.35, containing 0.1% albumin, 2-mM PMSF, 20 KIU Aprotinin/ml, and 0.02% NaN₃ (veronal-inhibitor buffer) with 36 ml of cryoprecipitate. Additional Aprotinin and diisopropyl fluorophosphate were added to raise the final concentrations of these reagents in the 40 ml of solution to 5 KIU/ml and 2 mM, respectively. The solution was absorbed with 1.2 ml of Al(OH)₃ for 10 min and centrifuged for 10 min at 6000 g. The supernatant was then incubated for 10 min with 0.4 g of bentonite, centrifuged at 6000 g for 10 min to remove the bentonite, and applied to a 5- × 37.5-cm column of agarose A-15m equilibrated with the veronal-inhibitor buffer. The column was eluted at a flow rate of 2.5 ml/min.

Lyophilized concentrate samples from the various manufacturers containing 250-375 VIII:C units were dissolved in 40 ml of the veronal-inhibitor buffer. The solutions were treated with Aprotinin, diisopropyl fluorophosphate, Al(OH)₃, and bentonite and were chromatographed on the A-15m column in the same manner as the cryoprecipitate samples.

In both cases the void volume peaks containing factor VIII activities were pooled, precipitated by the addition of PEG 4000 to a final concentration of 15%, and incubated overnight at 4°C. The samples were then centrifuged at 7000 g for 30 min at 4°C, and the precipitates were dissolved in a buffer of 0.02-M sodium citrate, 0.3-M NaCl, 2.5-mM PMSF, and 20 KIU of Aprotinin/ml, pH 7.0. Sample aliquots were stored at -80°C. All of the concentrate samples from the various manufacturers were chromatographed and examined by first-dimension SDS gel electrophoresis (vide infra). The Hyland AHF concentrate was used in further experiments involving crossed immunoelectrophoresis, second-dimension SDS gel electrophoresis, and platelet aggregation in the presence of nistocetin.

Clg was removed from some sample aliquots by gelatin-Sepharose absorption. Samples containing as much as 10 µg of Clg in a 0.5-ml aliquot were incubated for 1 hr at 22°C with 0.3 ml of gelatin-Sepharose. The Sepharose beads were removed by centrifugation at 6000 g for 10 min. Clg could not be detected in the supernatant by a crossed immunologic assay sensitive to 5 µg of Clg per milliliter of solution.

Human IgM and fibrinogen purified from pooled normal plasma and cross-linked with dimethyl suberimidate served as M, markers on SDS gels.

First-Dimension SDS Gel Electrophoresis

Cylindrical SDS gels (0.5 × 9.5 cm) composed of 1.5% polyacrylamide-0.5% agarose were made by the same procedure used in preparing 3% polyacrylamide-0.5% agarose gels, but the concentration of acrylamide was halved. The 1.5% polyacrylamide-0.5% agarose gels did not adhere to the walls of the glass tubes; tissue paper held to the bottoms of the tubes with sections of rubber tubing kept the gels
from slipping out during electrophoresis. Possible gel loss through flotation was prevented by placing a 5-mm-diameter porous polyethylene disk edgewise into the top of each gel tube after sample application but before buffer overlay. The gel sample buffer was also the same, containing 2% SDS, 8-M urea, 2-mM acid EDTA, and 0.05-M TRIS-HCl, pH 8.0.

Samples of protein to be used for SDS gel electrophoresis were prepared either by mixing the sample directly with an equal volume of denaturing gel sample buffer or by precipitating the protein first with 15% PEG 4000 and then dissolving the precipitate in gel sample buffer. The latter procedure was used with low protein concentrations. The SDS-treated samples were heated at 65°C for 15 min, and 30 µl aliquots containing 25–50 µg of protein were applied to each gel. Electrophoresis was performed at 75 V for 0.5 hr and then at 120 V for 1.5 hr. Staining was carried out by incubating the gels overnight in a solution of 35 mg of Coomassie blue R-250/liter, 10% isopropanol, and 10% acetic acid. The gels were destained in a solution of 7.5% acetic acid and 5% methanol.

Second-Dimension SDS Gel Electrophoresis

Slab gels (3% polyacrylamide-0.5% agarose) 3 mm thick were made as described previously, but were formed as 11- × 14.5-cm sections to fit on the horizontal MRA slab gel bed. When in place on the MRA apparatus, the top glass plate covering the gel was removed, and a sample well 0.5 × 9.5 cm was cut into the slab 2 cm from the cathode wick to hold the cylindrical gel for the second-dimension electrophoresis separation. A small quantity of 0.5% agarose was used to seal the bottom of the well to prevent leakage of reducing sample buffer. Additional sample wells 1 × 3 mm were cut on either side of the large well to hold protein used for M, markers.

Protein electrophoresed on the 1.5% polyacrylamide-0.5% agarose gel was reduced for second-dimension analysis by incubating the gel in 6.5 ml of sample buffer (completely surrounding the gel), containing 1% dithiothreitol, at 37°C for 20 min. The sample buffer was removed, and the tube containing the gel was flushed with nitrogen, sealed with a stopper, and incubated overnight at 22°C.

Second-dimension gel electrophoresis was carried out at constant voltage: 75 V for the first 0.5 hr and 140 V for the remaining 3.5 hr. Reduced CIg, myosin, and fibrinogen Aα, Bβ, and γ chains were used as M, markers of M, 2.2 x 10^5, 2 x 10^5, 6.8 x 10^4, 5.6 x 10^4, and 4.8 x 10^4, respectively. Staining with Coomassie blue and destaining were performed as with the first-dimension gels.

RESULTS

Agarose Gel Chromatography of Cryoprecipitate and Concentrate

VIII:C and VIIIIR:WF activities were isolated in the void volume peak of the A-15m agarose gel column to remove most of the non-VIII contaminants (Fig. 1). The ratio of VIII:C to VIIIIR:WF was greater in all of the concentrate samples than in the cryoprecipitate samples. The optical absorbance of the cryoprecipitate void volume peak was much higher than that from samples of concentrate, reflecting the presence of non-VIII-related proteins and chylomicrons. The same regions of column eluate for both chromatographed cryoprecipitate and concentrate were concentrated and used for further experiments. It should be noted that in order to avoid procedures that would alter the polymeric structure or molecular weight distribution of VIIIIR:WF multimers, the samples were treated initially and chromatographed in the presence of proteolytic inhibitors. Methods such as extraction of cryoprecipitate with low-ionic-strength buffer and PEG fractionation were not used, since they could lead to enrichment of lower-molecular-weight multimers.

Crossed Immunoelectrophoresis

VIIIIR:Ag in cryoprecipitate was compared with that in concentrate by crossed immunoelectrophoresis (Fig. 2). The VIIIIR:Ag immunoprecipitin curve obtained
Comparison of VIII R:WF Protein

Fig. 1. Elution profiles of typical AHF concentrate and cryoprecipitate samples chromatographed over A-15m agarose. The eluate fractions under the bars, containing the majority of VIII:C and VIIIIR:WF activities, were pooled and concentrated.

from concentrate was asymmetric, with its peak shifted slightly toward the anode, as compared with the symmetric curve of VIIIIR:Ag from cryoprecipitate. Assuming, in this case, that migration distance is primarily a function of size rather than charge, one can infer from this shift that there is a greater percentage of smaller, faster-migrating VIIIIR:WF multimers in concentrate than in cryoprecipitate.

Fig. 2. Crossed immunoelectrophoresis of VIIIIR:Ag contained in the void volume peak of chromatographed AHF concentrate and cryoprecipitate. The arrows and broken line indicate the more anodal peak position and asymmetry of the concentrate VIIIIR:Ag precipitin line, as compared with that from cryoprecipitate.
First-Dimension SDS Gel Electrophoresis

Samples of the void volume fraction from chromatographed cryoprecipitate and concentrate were electrophoresed on 1.5% polyacrylamide–0.5% agarose SDS gels (Fig. 3). Samples from both sources contained, in addition to VIIIIR:WF protein, IgM, Clg, fibrinogen monomer and dimer, and unidentified protein(s) with a monomer form having approximately the same mobility as fibrinogen dimer. Clg had an apparent $M_r = 8.5 \times 10^5$ on these gels, twice the molecular weight determined by sedimentation equilibrium. The cause of this anomaly is not known. The relative concentrations of void volume proteins differed among individual preparations, but samples of cryoprecipitate generally contained higher levels of material unrelated to VIIIIR:WF protein than did samples of concentrate.

In all samples two major characteristics distinguished cryoprecipitate VIIIIR:WF multimers from those found in concentrate. Cryoprecipitate VIIIIR:WF protein appeared to be a multimer with polymer molecular weight increasing in a uniform or homologous manner (Fig. 3A). Using cross-linked fibrinogen and cross-linked IgM as molecular-weight markers, and assuming that the VIIIIR:WF multimers migrate similarly, we estimated the molecular-weight difference between multimers to be $6.5 \times 10^3 \pm 0.7 \times 10^3$ (SD), or two to three 2.4×10^5 subunits per increment. The molecular weight of VIIIIR:WF multimers from concentrate increased in a nonuniform or heterogeneous manner. Migration distances between polymers equivalent to $M_r = 2.5 \times 10^5 \pm 0.5 \times 10^5$ alternated with spaces analogous to $M_r = 5 \times 10^3 \pm 0.5 \times 10^5$. The concentrate VIIIIR:WF multimer thus appeared to be composed of a repeating “doublet.” On heavily loaded gels an additional band could be discerned between doublets. Adsorption of Clg with gelatin-Sepharose from samples of both cryoprecipitate and concentrate did not change the VIIIIR:WF multimer pattern.

The second major difference between VIIIIR:WF multimers from the two sources was in their range of molecular weights. Approximately 85% of the multimers from all samples of concentrate from the various manufacturers were between
M_r = 1.4 \times 10^6 and 5 \times 10^6, whereas 75\% of the cryoprecipitate multimers were above M_r = 5 \times 10^6 (Fig. 3B).

Second-Dimension SDS Gel Electrophoresis

Void volume protein obtained from chromatographed AHF concentrate and cryoprecipitate was examined further by second-dimension SDS gel electrophoresis. This procedure involved incubating the first-dimension gel in dithiothreitol to reduce proteins to their constituent monomeric subunits (Figs. 4 and 5).

All VIIIIR:WF multimers from cryoprecipitate (Fig. 4) were reduced to monomeric subunits of M_r = 2.4 \times 10^5. The subunits of other proteins detected by this procedure included the heavy chain of IgM, the subunits of Clg and \alpha_2-macroglobulin, and the A\alpha, B\beta, and \gamma chains of fibrinogen. The unidentified protein(s) appeared to be a multimer with a major protomer of M_r = 5 \times 10^5.

The protein contained in the void volume of chromatographed concentrate was similarly examined by second-dimension SDS gel electrophoresis (Fig. 5). Trace components with M_r = 1.4 \times 10^5 were observed in the second-dimension gel under the 2.4 \times 10^5 subunits of VIIIIR:WF. This material is probably a degraded form of the M_r = 2.4 \times 10^5 subunit, since it is expected that a noncovalently bound contaminant of this molecular weight would be separated from the M_r > 10^6 multimers on the first-dimension gel. Other than this trace component, however, there was no difference between the reduced VIIIIR:WF multimers from cryoprecipitate and concentrate, despite the great differences in average molecular weights and polymer migrations of the unreduced proteins.

Fig. 4. Second-dimension SDS gel electrophoresis of void volume proteins obtained by chromatography of cryoprecipitate on agarose A-15m before (first-dimension) and after (second-dimension) reduction with dithiothreitol. The arrows indicate (1) the M_r = 2.4 \times 10^5 subunit of VIIIIR:WF protein, (2) an unidentified protein and its multimers, (3) the heavy chain of IgM, (4) a subunit of Clg, (5) an \alpha_2-macroglobulin subunit, and (6) the polypeptides of fibrinogen.
Comparison of VIIIr:WF Activities Obtained From Cryoprecipitate and Concentrate

The ratio of VIIIr:WF activity to VIIIr:WF protein was also considered (Table 1). The samples of cryoprecipitate and concentrate compared here had 22 VIIIr:Ag U/ml and 86 VIIIr:Ag U/ml, respectively. Two-stage SDS gel electrophoresis was also performed to determine the relative amounts of $M_i = 2.4 \times 10^5$ VIIIr:WF subunit present in each sample. Conceivably, for an equal amount of subunit, the smaller, faster-moving VIIIr:WF multimers of concentrate could give disproportionately higher antigen levels than VIIIr:WF from cryoprecipitate. However, the relative concentration of subunit was in proportion to the amount expected by the immunologic technique. The ratios of VIIIr:WF activity to VIIIr:Ag were 0.28 for concentrate and 0.72 for cryoprecipitate. Thus, for the particular samples examined, VIIIr:WF protein from cryoprecipitate was 2.6

<table>
<thead>
<tr>
<th></th>
<th>VIIIr:WF (U/ml)</th>
<th>VIIIr:Ag (U/ml)</th>
<th>VIII Subunit (arbitrary units)*</th>
<th>VIIIr:WF/VIIIr:Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrate</td>
<td>24 ± 2 (SD)(n = 5)</td>
<td>86 ± 7 (SD)(n = 7)</td>
<td>4</td>
<td>0.28</td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>16 ± 2 (SD)(n = 5)</td>
<td>22 ± 2 (SD)(n = 7)</td>
<td>1</td>
<td>0.72</td>
</tr>
</tbody>
</table>

*Serial dilutions of cryoprecipitate and concentrate samples were used to obtain the linear relationship between subunit peak area and sample dilution. The slope of the line derived from concentrate dilutions was four times greater than that obtained from cryoprecipitate.
times more effective as a platelet aggregating agent in the presence of ristocetin than VIII R:WF protein from concentrate.

DISCUSSION

The polymeric nature of VIII R:WF protein reported here is consistent with the observations of other investigators who have used techniques such as crossed immunoelectrophoresis, agarose gel electrophoresis, and SDS gel electrophoresis to detect structural heterogeneity. It is also in agreement with the electron microscopy studies of Marder et al., who observed purified VIII R:WF protein to consist of various sizes. However, this Mr heterogeneity was not confirmed by the ultracentrifugation Mr analysis of Legaz et al. These investigators employed 6-M guanidine HCl as a disaggregating agent and determined that VIII R:WF was a single protein of Mr = 1.2 \times 10^6. It is possible that only one polymeric form of VIII R:WF protein was isolated by the techniques used by these investigators or that the protein aggregates are not held together by covalent bonds and disaggregate in the presence of guanidine, but not with 1% SDS–8-M urea. Even if the latter is tenable, given the results presented here and elsewhere, VIII R:WF protein most likely exists as a multimer under normal ionic strength conditions.

VIII R:WF multimers from cryoprecipitate have, on the average, high molecular weights and are composed of a uniform repeating unit, in contrast to the lower-molecular-weight doublets of VIII R:WF protein from concentrate. The regular spacings between the multimer bands of cryoprecipitate VIII R:WF protein are equivalent in this SDS gel system to Mr = 6.5 \times 10^5 \pm 0.7 \times 10^5. Our estimate of molecular weight is based on the migration of the unreduced multimer in 1.5% polyacrylamide–0.5% agarose gels compared with the migration of cross-linked fibrinogen and IgM. The value of two subunits per increment would be in accord with the evidence reported by Counts et al., who employed a 2% polyacrylamide–0.5% agarose gel in their studies. By comparing the migration distance of partially reduced multimers to that of multimers formed from synthetically cross-linked, fully reduced and alkylated subunits, these investigators determined that the subunit dimer was the basic repeating unit. Only even-numbered multimers were observed in the former series, whereas both even and odd were present in the latter series.

The smaller heterogeneous multimers of VIII R:WF from concentrate are in part the product of selective enrichment of the lower-molecular-weight forms during the commercial purification process. This enrichment may take place at the stage of extracting cryoprecipitate with a low-ionic-strength buffer, which is consistent with the higher solubility of lower-molecular-weight forms of VIII R:WF protein. The doublet pattern is presumably the result of proteolysis, as suggested by the trace component with Mr = 1.4 \times 10^5. However, nondegradative processes may also be responsible. For example, intact disulfide bonds could preserve a linear, globular, or mixed assembly of subunits each type having a different migration rate for equivalent Mr. The round, rod-shaped, and hook-shaped structures reported by Tan and Andersen in their electron microscopic study of VIII R:WF protein may be the physical causes for these heterogeneities.

Whatever the cause of differences between VIII R:WF protein from cryoprecipitate and concentrate, the difficulty in detecting these differences emphasizes the
caution that must be exercised when comparing the physical properties attributed to VIIIIR:WF protein obtained by different laboratories. The purity of VIIIIR:WF protein has frequently been assessed by examining the protein in its intact and reduced states on 4% or 5% polyacrylamide gels. Polymeric heterogeneity of the intact protein could not be detected on such highly cross-linked gels, and on reduction VIIIIR:WF protein from both sources would appear to have identical M_r = 2.4 \times 10^5 subunits. Similarly, conventional crossed immunoelectrophoresis does not have the resolving power to distinguish between heterogeneous and homogeneous polymers.

The high-molecular-weight population of VIIIIR:WF protein in cryoprecipitate and the greater ability of cryoprecipitate to aggregate platelets in the presence of ristocetin, as compared with VIIIIR:WF protein in concentrate, are in agreement with the observations of several other groups. Koutts and Zimmerman have reported that only the larger forms of human VIIIIR:Ag bind to human platelet membrane preparations. It is most likely that electrophoretically fast migrating VIIIIR:Ag found by crossed immunoelectrophoresis in some variants of von Willebrand’s disease is the result of the smaller size of the VIIIIR:WF multimer population, analogous to the immunoelectrophoresis results reported here.

Similarly, the ability of cryoprecipitate, in contrast to concentrate, to stop the prolonged bleeding of von Willebrand’s patients may be related to the size differential of VIIIIR:WF protein from the two sources. VIIIIR:WF activity as measured by aggregation of platelets in the presence of ristocetin appeared to be separable from the activity responsible for correcting prolonged bleeding. Possibly a slightly lower molecular-weight range of multimers or a lower concentration of higher-molecular-weight multimers is sufficient for the ristocetin reaction to occur but not for the events yielding in vivo cessation of bleeding. However, our work and that of others suggest that the closer to unity the ratio of VIIIIR:Ag to in vitro VIIIIR:WF activity in a given factor VIII preparation, the better the in vivo activity of the preparation.

ACKNOWLEDGMENT

We wish to acknowledge the helpful discussion of this work with Dr. Jack Hawigen and the expert technical assistance of Alice Spencer, John Grous, and Henry Friedman.

REFERENCES

Comparison of factor VIII-related von Willebrand factor proteins prepared from human cryoprecipitate and factor VIII concentrate

M Weinstein and D Deykin