Nylon Fiber Leukapheresis: Associated Complement Component Changes and Granulocytopenia

By J. Nusbacher, S. I. Rosenfeld, J. L. MacPherson, P. A. Thiem, and J. P. Leddy

The possible role of complement activation in the development of transient granulocytopenia during nylon fiber filtration leukapheresis (FL) was studied in five normal donors. No changes in hemolytic complement (CH50) titers were observed in the donors' circulating plasma at any point in the procedure. However, comparison of pre- and postfilter blood samples drawn 1 min after donor blood passed the filters revealed decreases in several complement (C) components in postfilter plasma. Marked reductions in CH50, hemolytic C4 and C2, and properdin protein levels were observed, as well as moderate but significant reductions in hemolytic C1, C3, and C5 titers. Clq and factor B protein levels did not fall. Partial C3 cleavage was also demonstrated in postfilter samples by electrophoretic methods. At 5 min or later, reductions in CH50 titers were much less marked, though significant. Maximal granulocytopenia in the donors was observed within minutes after reinfusion of the first postfilter blood. Circulating granulocytes increased to baseline or higher levels after 10–30 min, while reinfusion of postfilter blood (exhibiting only mild reductions in CH50 titer) continued. In a sixth donor, after the initial FL-associated granulocytopenia had cleared, a fresh set of filters was inserted in the line, and the sequence of C component reduction and granulocytopenia was repeated. The pattern of the observed C component changes was consistent with the activation of the classical C pathway, and possibly also the alternative C pathway, immediately after initial contact of blood with the nylon filters. The temporal association of these C changes with the development of the granulocytopenia in vivo within minutes after reentry of this postfilter blood into the donors' circulation suggests a causal relationship.

Filtration leukapheresis (FL) is a technique commonly used for collecting granulocytes for transfusion. When FL is performed on normal donors, a marked granulocytopenia occurs within minutes after blood which has passed through the nylon filters returns to the donor. The granulocytopenia lasts 10–15 min and is usually followed by a significant granulocytosis, which may persist throughout the entire procedure.

The mechanism of the granulocytopenia, which occurs too rapidly and is too profound to be the result of simple cell removal, is unexplained. There is evidence that blood interacting with the nylon filters may release or activate a humoral substance(s) responsible for this phenomenon. Schiffer et al. have suggested that leukocytes reacting with nylon are responsible. However, Rubins et al. have found that plasma alone, when passed through the nylon filters, may also produce granulocytopenia. Studies in rabbits indicate that complement (C)
activation occurs when homologous plasma is incubated with nylon fibers in vitro and that a marked granulocytopenia occurs after such plasma is rein-
fused. This granulocytopenia-producing activity has been attributed to a heat-
stable, low molecular weight factor derived from or dependent upon C activa-
tion. In a preliminary study, Fehr et al. have reported that neutrophils from
donors undergoing FL have reduced levels of lysosomal enzymes and impaired
sensitivity to C-derived chemotactic factors.

There is, however, no direct evidence in humans demonstrating C activation
or its role in inducing granulocytopenia during FL. The purpose of this report
is to document marked changes in the levels of multiple C components during
the earliest stages of FL in humans, and a striking temporal relationship of this
phenomenon to the development of granulocytopenia in vivo.

MATERIALS AND METHODS

Donors

All donors were healthy males and met American National Red Cross criteria for plasmapheresis
donors. Informed consent was obtained.

Leukapheresis

FL was performed on five donors using the filtration leukapheresis set supplied by Fenwal
Laboratories, Morton Grove, Ill. The set was filled (primed) with 0.9% NaCl solution containing
heparin sulfate 1 U/ml. Donors were given a single intravenous injection of 17,500 units heparin
sulfate 10 min before FL was begun. No other medications were given before or during the pro-
cess. FL was otherwise conducted according to the manufacturer's instructions. A 50 ml/min
flow rate was used in all donors.

In one additional experiment, FL was stopped after 90 min, the FL set removed and replaced
with a new set primed as before, and FL was reinstituted. The donor was given an additional 5000
units heparin sulfate 30 min later.

Sampling

Using a three-way stopcock, blood was sampled simultaneously from the pre- and postfilter limbs
of the leukapheresis set at various times during the FL procedure. Prefilter specimens (i.e., blood
from the donor) were obtained at a port about 30 cm from the phlebotomy site (and 1.8 m from the
filter). Postfilter specimens were obtained at a port about 1.6 m from the venipuncture site and 1.3
m from the filters. Prefusion blood samples were obtained immediately prior to the start of the
procedure, approximately 10 min after heparin had been administered. During the procedure,
samples were taken from both pre- and postfilter sites at 1, 5, 10, and 30 min after donor blood first
appeared in the tubing on the distal side of the filters. Plasma was separated by centrifugation
within 10-15 min of sampling and promptly frozen in aliquots at –70°C until assayed.

Because of the likelihood of hemodilution with the priming solution in the 1-min postfilter speci-
mens, hematocrits were performed on these samples and compared with simultaneously drawn pre-
filter specimens where hemodilution was not present. The amount of hemodilution is shown in
Table 1, and all postfilter complement values for the 1-min specimens were corrected accordingly.
Dilution in samples obtained later than 1 min was negligible. The priming solution itself did not
interfere with C titrations.

White blood cell counts (Coulter ZBI apparatus) and differential counts (200 cells) were obtained
for each time interval on the prefilter sample.

Complement Assays

Functional, hemolytic titrations for total complement, C1, C4, C2, C3, and C5 were performed
as previously described. Single radial immunodiffusion assays for C4, C3, and C5 utilized commer-
cial kits (C4 and C5; Meloy Laboratories, Springfield, Va.; C3; Hyland Division, Travenol Labora-
Similar radial immunodiffusion assays were performed for properdin factor B and Clq utilizing monospecific antisera obtained from Atlantic Antibodies (Westbrook, Me.). Monospecific antiproperdin for radial immunodiffusion was prepared by immunizing a rabbit with highly purified human properdin. Immunoelectrophoretic analysis for conversion products of C3 and properdin factor B was performed as reported.

Statistics

Statistical analyses of the differences between pre- and postfilter C values utilized the single-tailed paired t test for hemolytic values and the double-tailed paired t test for immunodiffusion data.

RESULTS

Figure 1 illustrates the temporal relationship between the donors’ circulating granulocyte counts and whole hemolytic C (CH$_{50}$) titers in blood samples ob-

Table 1. Hemolytic Complement Assays on Samples Obtained Simultaneously on Both Sides of the Nylon Filters 1 min After Donor Blood Became Visible Exiting From Filters

<table>
<thead>
<tr>
<th>Donor</th>
<th>CH$_{50}^*$</th>
<th>C4</th>
<th>C4t</th>
<th>C2</th>
<th>C2t</th>
<th>C3</th>
<th>C3t</th>
<th>C5</th>
<th>C5t</th>
<th>Dilution† (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1702</td>
<td>101</td>
<td>37</td>
<td>85.3</td>
<td>42.5</td>
<td>77.5</td>
<td>33.3</td>
<td>9.4</td>
<td>1.2</td>
<td>38.6</td>
<td>30.1</td>
</tr>
<tr>
<td>1699</td>
<td>114</td>
<td>44</td>
<td>71.3</td>
<td>38.3</td>
<td>81.6</td>
<td>35.1</td>
<td>8.2</td>
<td>1.7</td>
<td>34.9</td>
<td>24.6</td>
</tr>
<tr>
<td>1694</td>
<td>108</td>
<td>54</td>
<td>68.9</td>
<td>61.2</td>
<td>91.9</td>
<td>69.1</td>
<td>6.5</td>
<td>1.3</td>
<td>37.3</td>
<td>26.7</td>
</tr>
<tr>
<td>1693</td>
<td>119</td>
<td>40</td>
<td>57.9</td>
<td>40.8</td>
<td>132.6</td>
<td>75.4</td>
<td>7.8</td>
<td>0.8</td>
<td>33.0</td>
<td>23.7</td>
</tr>
<tr>
<td>1691</td>
<td>155</td>
<td>72</td>
<td>51.5</td>
<td>49.2</td>
<td>118.7</td>
<td>83.2</td>
<td>8.7</td>
<td>2.8</td>
<td>33.0</td>
<td>23.8</td>
</tr>
</tbody>
</table>

Normal pool$^\|$ 149 75 100 8.5 37 250
Mean 119.4 49.4 66.9 46.4 100.5 59.2 8.1 1.6 35.4 25.8 217.9 195.4
SEM 8.40 5.66 5.21 3.68 9.64 9.36 0.43 0.31 1.01 1.08 4.42 5.29
p < 0.0005 < 0.05 < 0.005 < 0.0005 < 0.0005 < 0.005

*U/ml (normal range 80–160). Postfilter values are corrected for dilution.

†U/ml ($\times 10^{-3}$). All postfilter values are corrected for dilution.

\dagger Calculated from hematocrit changes.

§Pool of 30 normal sera assayed concurrently with donor samples.
Table 2. Radial Immunodiffusion Assays on Samples Obtained Simultaneously on Both Sides of the Nylon Filters 1 min After Donor Blood Became Visible Exiting From Filters

<table>
<thead>
<tr>
<th>Donor</th>
<th>C1q (μg/ml)</th>
<th>C4 (mg/dl)</th>
<th>C3 (mg/dl)</th>
<th>C5 (μg/ml)</th>
<th>Factor B (μg/ml)</th>
<th>Properdin (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>1702</td>
<td>187</td>
<td>188</td>
<td>18</td>
<td>14</td>
<td>112</td>
<td>124</td>
</tr>
<tr>
<td>1699</td>
<td>152</td>
<td>150</td>
<td>20</td>
<td>14</td>
<td>115</td>
<td>114</td>
</tr>
<tr>
<td>1694</td>
<td>156</td>
<td>166</td>
<td>27</td>
<td>16</td>
<td>130</td>
<td>126</td>
</tr>
<tr>
<td>1693</td>
<td>197</td>
<td>208</td>
<td>37</td>
<td>27</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>1691</td>
<td>157</td>
<td>152</td>
<td>31</td>
<td>23</td>
<td>99</td>
<td>94</td>
</tr>
</tbody>
</table>

Mean: 169.8, 172.8, 26.6, 18.8, 112.2, 113.6, 103.6, 104, 239.4, 257.2, 14.3, 2.5
SEM: 8.26, 9.94, 3.13, 2.35, 4.69, 5.13, 2.82, 2.04, 5.04, 4.26, 1.11, 0.42
Paired t: 0.935, 6.091, 0.441, 0.302, 4.377, 12.934
p: NS, <0.01, <0.01, <0.01, <0.001

Postfilter values are corrected for dilution.

...
Postfilter values are corrected for dilution.

*CH titers in U/mL. All other hemolytic values in U/mL (x 10). See Tables 1 and 2 for normal values.

Fig. 2. Changes in granulocyte count during FL and after second set of filters was inserted.

Figure 2 demonstrates the reoccurrence of granulocytopenia when a new set of nylon filters was inserted during an FL procedure. CH50, C1, C4, C2, and C3 hemolytic titers fell in both postfilter specimens obtained at 1 min, while C5 remained unchanged after the second filtration (Table 3). Protein levels of C4 and properdin were also reduced in both postfilter samples (Table 3).

DISCUSSION

Significant destruction or consumption of multiple C components has been documented during FL. The most marked changes in C occur very early in the procedure, apparently as a result of first contact of the heparinized blood with the saline-primed filters. The maximum fall in circulating granulocytes occurs within minutes after this postfilter blood reenters the donor, as described previously. Although low-grade C consumption may continue throughout the procedure (Fig. 1), the leukocyte counts recover rapidly and surpass pretreatment levels. It is not clear why this recovery should take place. One possibility is that the donor rapidly develops a refractoriness to a granulocytopenia-producing factor. If so, the effect is transient; later in the procedure the donor promptly exhibits a second cycle of granulocytopenia after reinfusion of blood which has just passed through a pair of fresh filters (Fig. 2). Alternatively, it can be postulated that the granulocytopenia-producing activity is a product

Table 3. Complement Component Assays on Samples Obtained Simultaneously on Both Sides of the Nylon Filters 1 min After Donor Blood Became Visible Exiting From the Filters

<table>
<thead>
<tr>
<th>Filter</th>
<th>Pre</th>
<th>Post</th>
<th>Pre</th>
<th>Post</th>
<th>Pre</th>
<th>Post</th>
<th>Pre</th>
<th>Post</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH50</td>
<td></td>
</tr>
<tr>
<td>First</td>
<td>102</td>
<td>55</td>
<td>91.7</td>
<td>40.0</td>
<td>55.1</td>
<td>44.9</td>
<td>8.4</td>
<td>42.3</td>
<td>31.3</td>
<td>230</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Second</td>
<td>101</td>
<td>34</td>
<td>103.7</td>
<td>39.3</td>
<td>64.2</td>
<td>28.6</td>
<td>8.4</td>
<td>35.6</td>
<td>28.0</td>
<td>215</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
</tr>
</tbody>
</table>

Immunodiffusion Assays

<table>
<thead>
<tr>
<th>Filter</th>
<th>Pre</th>
<th>Post</th>
<th>Pre</th>
<th>Post</th>
<th>Pre</th>
<th>Post</th>
<th>Pre</th>
<th>Post</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1q</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>Factor B</td>
<td></td>
</tr>
<tr>
<td>Properdin</td>
<td></td>
</tr>
</tbody>
</table>

Postfilter values are corrected for dilution.

*CH50 titers in U/mL. All other hemolytic values in U/mL (x 10^-3). See Tables 1 and 2 for normal values.
only of initial contact between blood and a “fresh” filter. It is of interest that
the destruction or consumption of C components, as measured by CH50 titers,
also diminishes rapidly after the marked initial falls at 1 min (Fig. 1).

Closer analysis of the C changes provides evidence that components of both
the classical and alternative pathways are affected (Tables 1–3). The pattern
of classical C component reductions, i.e., moderate fall in C1 with more marked
reductions in C4 and C2, is consistent with activation of C1 esterase. The find-
ing of reduced C1 function (Table 1) without a fall in Clq protein (Table 2)
raises the possibility that C1 is being activated without being bound and re-
moved from solution. The moderate reductions in functional C3 and C5 would
also be consistent with classical pathway activation, although a contribution
from alternative pathway activation is possible.

Our analysis of the alternative C pathway changes is incomplete. The avail-
able data are somewhat puzzling in that properdin levels are so profoundly
altered out of proportion to relatively small changes in factor B. It is possible
that at least a portion of the properdin loss may result from a nonspecific
affinity for nylon fibers. On the other hand, it is known that C3b is the major
binding site for properdin on the immune complex.6 Although we do not have
evidence for large amounts of C3b binding on the fibers, the quantitative rela-
tionships are such that a small proportion of the plasma C3, binding as C3b,
might bind a large percentage of the available properdin.

The mechanism by which C activation may occur during FL remains to be
clarified. Aggregation of immunoglobulins on nylon fibers or generation of
plasmin, which has C1-cleaving activity,7 could initiate classical pathway activa-
tion. Alternative pathway activation could be a secondary consequence of a
classical pathway–initiated feedback via C3b;8 or it might result from direct
contact of plasma with the foreign surfaces or, in part, from leukocytic enzyme
release.9,10 Direct cleavage of C components by leukocytic enzymes is also con-
ceivable.9,11,12 However, passage of plasma alone through the filters can induce
granulocytopenia,1 an observation which we have confirmed in additional
studies, together with finding preliminary evidence for C consumption. This
finding suggests that leukocyte-derived factors are not essential for the gran-
ulocytopenic effect, although they might be contributory when whole blood is
being processed. These questions are a subject of continuing investigation.

The present studies do not establish a causal relationship between comple-
ment activation and granulocytopenia, but the temporal association is very
suggestive. Administration of known C-activating substances (cobra venom
factor, inulin, or aggregated y-globulin) to rabbits produces an immediate
neutropenia, followed by neutrophilia, similar to that seen in FL donors.3,13
Furthermore, an analogy can be made with humans undergoing hemodialysis,
during which alternative C pathway activation and granulocytopenia have been
related to plasma contact with cellophane membranes.14

ACKNOWLEDGMENT

The authors are indebted to Beth Grapka, Jill Countryman, and Isabel Dowling for highly
skilled technical assistance.
REFERENCES

Nylon fiber leukapheresis: associated complement component changes and granulocytopenia

J Nusbacher, SI Rosenfeld, JL MacPherson, PA Thiem and JP Leddy