Hemoglobin Affinity for Oxygen in Chronic Renal Disease: The Effect of Hemodialysis

By Marshall A. Lichtman, Marion S. Murphy, Barbara J. Byer, and Richard B. Freeman

The affinity of hemoglobin for oxygen may increase significantly in subjects who are hypophosphatemic and alkalotic. We studied the organic phosphate content and oxygen binding by hemoglobin of red cells in subjects undergoing hemodialysis, during which time a decrease in plasma inorganic phosphate and an increase in blood pH may occur. Red cell 2,3-DPG was not correlated with plasma inorganic phosphorus, whereas red cell ATP was highly correlated with plasma inorganic phosphorus when analyses were made on predialysis samples. Predialysis red cell inorganic phosphorus was highly correlated with plasma inorganic phosphorus, supporting the concept that intraerythrocytic inorganic phosphorus is maintained by a gradient from plasma to cell. Plasma inorganic phosphorus decreased by 45% during the period of hemodialysis, whereas red cell inorganic phosphorus did not change. Red cell 2,3-DPG, ATP, and oxygen binding by hemoglobin at standard conditions of temperature, pH, and pCO2 were not altered after 6 hr of hemodialysis. Plasma pH and base excess increased during dialysis. The increase in base excess, an estimate of the non-pH-dependent effect of CO2 on oxygen binding by hemoglobin, counterbalanced a portion of the effect of elevated pH on hemoglobin-oxygen affinity under in vivo conditions. Hence, only a slight increase in oxygen binding by hemoglobin occurred. Moreover, late dialysis symptoms were not associated with the degree of alkalosis or with the extent of change in hemoglobin's affinity for oxygen. Red cell 2,3-DPG content was lower and hemoglobin's affinity for oxygen was higher in subjects with chronic renal disease than in nonazotemic subjects with similar hemoglobin deficits. Moreover, increased red cell ATP in chronic renal disease patients did not influence oxygen binding by hemoglobin.

Patients with severe chronic renal disease requiring hemodialysis are markedly anemic and would be expected to have an increase in red cell 2,3-diphosphoglycerate (2,3-DPG)1 and subsequently hydrogen ion2 leading to a decrease in hemoglobin's affinity for oxygen.

Extracellular factors are known to influence indirectly the affinity of hemo-

From the Hematology and Nephrology Unit of the Department of Medicine and the Department of Radiation Biology and Biophysics at the University of Rochester School of Medicine and Dentistry, Rochester, N.Y. 14642.

Supported by USPHS Grants CA27900 and HE 06241 and by contracts with the United States Army Research Development Command (DA-49-193-MD-2656) and the New York State Kidney Institute and by the Atomic Energy Project at the University of Rochester, and has been assigned publication number UR-3490-276.

Marshall A. Lichtman, M.D.: Associate Professor of Medicine and of Radiation Biology and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, N.Y. 14642. Marion S. Murphy, B.S.: Senior Research Technologist, University of Rochester School of Medicine and Dentistry, Rochester, N.Y. 14642. Barbara J. Byer, R.N.: Head Nurse, Hemodialysis Unit, University of Rochester School of Medicine and Dentistry, Rochester, N.Y. 14642. Richard B. Freeman, M.D.: Associate Professor of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, N.Y. 14642.

Reprint requests should be addressed to: M. A. Lichtman, M.D., University of Rochester Medical Center, 260 Crittenden Boulevard, Rochester, N.Y. 14642.

© 1974 by Grune & Stratton, Inc.
globin for oxygen. Plasma inorganic phosphate (P_i) and plasma pH may both affect the intracellular environment so as to change the ability of hemoglobin to bind oxygen. A reduction in plasma P_i or an increase in plasma pH, both known to occur during hemodialysis, could act to increase hemoglobin–oxygen affinity and thereby reduce oxygen transport in patients compromised by a blood hemoglobin deficit. The following studies were conducted to assess hemoglobin function during hemodilysis.

METHODS

Study Subjects

Eighteen consecutive patients with chronic renal disease were studied immediately before and after 6 hr of hemodialysis using a hollow-fiber artificial kidney. These subjects had been receiving thrice-weekly hemodialysis for at least 3 mo prior to study. Fifteen milliliters of blood was obtained anaerobically before and after dialysis from the arterial side of the patient’s fistula or shunt, anticoagulated with sodium heparin (15 U/ml), chilled on ice, and studies made immediately thereafter. Three patients had been transfused 8–12 wk prior to study.

Physicochemical Studies

Blood hemoglobin was measured in duplicate by the cyanmethemoglobin method, and hematocrit was measured in triplicate in an International Equipment Company microhematocrit centrifuge at approximately 10,000 g for 5 min. P_i was measured in trichloroacetic acid extracts of plasma and red cells, the latter previously washed three times with ice-cold 0.17 M NaCl. Tissue water content was measured on 1 ml of whole blood of known packed cell volume and 1 ml of autologous plasma that were weighed in duplicate before and after dessication at 80°C for 24 hr. Calculation of the water content per gram of cells or plasma could be made thereby. Red cell 2,3-DPG was measured by the method of Rose and Liebowitz and red cell adenine triphosphate (ATP) by the luciferase method. Hemoglobin oxygen saturation was measured with an Instrumentation Laboratory (I.L.) Model 182 cooximeter, pH, oxygen tension (P_o), and carbon dioxide tension (P_c) were determined with I.L. Model 113 pH-gas analyzer. An I.L. Gas mixing module, Model No. 2081, Oxygen Monitor Model No. 2083, and Model 137 Tonometer were used to adjust P_o to between 15 to 60 torr while P_c was maintained at 40 ± 0.2 torr. Each determination was made in duplicate. The P_o at which hemoglobin was 50% saturated at 37°C, pH 7.4, P_c = 40 torr (P_o std.) was derived from a least-squares analysis of the experimental points. Base excess (BE) was calculated from the blood pH and P_c as described by Severinghaus. The resultant P_o at standard conditions was converted to P_o in vivo by the formula: $\log P_{50} (\text{i.v.}) = \log P_{50} \text{ std.} + 0.0022\text{ BE} + 0.52 (7.40\text{ pH}) + 0.024 (T - 37°C)$.8

RESULTS

Plasma P_i fell in each of the ten consecutive patients studied, and the mean concentration was reduced 40% (Table I). Four of the ten patients studied had normal or low plasma P_i because of chronic administration of aluminum hydroxide gel (see Table I, patients F.W., D.M., M.R., and C.S.) The proportional reduction in plasma P_i with dialysis was closely correlated with the height of the predialysis plasma P_i values.

Red cell 2,3-DPG (16 ± 0.82 μmoles/g Hb) was unchanged after 6 hr of dialysis (16.3 ± 0.82) (Table I), and although red cell 2,3-DPG was higher than that of healthy subjects (14.6 ± 0.39 μmoles/g Hb) measured in our laboratory, it was below that expected for anemic subjects with a mean hemoglobin of 7.2 g/100 ml based on the studies of Torrance et al. (21 μmoles/g Hb), and studies from our laboratory, in which the regression of 2,3-DPG on blood hemoglobin in anemic subjects without renal disease is $Y = 27.7 - 0.88X$, where X = blood
Table 1. Blood Hemoglobin, pH, 2,3-DPG, ATP, and Hemoglobin–Oxygen Affinity Before and After Dialysis

<table>
<thead>
<tr>
<th>Subject</th>
<th>Blood Hb (g/100 ml)</th>
<th>MCHC (g/100 ml)</th>
<th>Blood pH</th>
<th>Base Excess (mmoles/liter)</th>
<th>Plasma P_{50} (µmoles/ml)</th>
<th>2,3-DPG (µmoles/g hemoglobin)</th>
<th>ATP (µmoles/g hemoglobin)</th>
<th>P_{50} Standard (torr)</th>
<th>P_{50} (in vivo) (torr)</th>
<th>\Delta P_{50} (in vivo) (torr)</th>
<th>Late Dialysis Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.W.</td>
<td>8.10</td>
<td>8.80</td>
<td>33.1</td>
<td>33.1</td>
<td>7.37</td>
<td>7.46</td>
<td>+2.0</td>
<td>+2.5</td>
<td>1.86</td>
<td>1.43</td>
<td>16.1</td>
</tr>
<tr>
<td>S.W.</td>
<td>6.97</td>
<td>8.07</td>
<td>31.5</td>
<td>33.2</td>
<td>7.31</td>
<td>7.44</td>
<td>-3.5</td>
<td>+2.0</td>
<td>2.10</td>
<td>1.22</td>
<td>17.7</td>
</tr>
<tr>
<td>G.F.</td>
<td>6.56</td>
<td>7.14</td>
<td>32.9</td>
<td>32.1</td>
<td>7.36</td>
<td>7.44</td>
<td>-3.5</td>
<td>-4.0</td>
<td>2.35</td>
<td>1.40</td>
<td>13.7</td>
</tr>
<tr>
<td>R.J.</td>
<td>9.40</td>
<td>8.89</td>
<td>30.8</td>
<td>30.8</td>
<td>7.40</td>
<td>7.41</td>
<td>-3.0</td>
<td>-1.0</td>
<td>1.54</td>
<td>1.12</td>
<td>14.7</td>
</tr>
<tr>
<td>M.Mc.</td>
<td>6.70</td>
<td>6.91</td>
<td>31.2</td>
<td>31.9</td>
<td>7.37</td>
<td>7.47</td>
<td>-3.5</td>
<td>+4.0</td>
<td>1.93</td>
<td>1.09</td>
<td>18.9</td>
</tr>
<tr>
<td>M.B.</td>
<td>6.86</td>
<td>7.88</td>
<td>33.8</td>
<td>34.8</td>
<td>7.38</td>
<td>7.42</td>
<td>-2.5</td>
<td>-2.5</td>
<td>2.95</td>
<td>0.93</td>
<td>13.3</td>
</tr>
<tr>
<td>F.W.</td>
<td>8.50</td>
<td>7.92</td>
<td>30.9</td>
<td>30.3</td>
<td>7.48</td>
<td>7.46</td>
<td>+0.5</td>
<td>+0.5</td>
<td>0.61</td>
<td>0.40</td>
<td>22.8</td>
</tr>
<tr>
<td>D.M.</td>
<td>6.79</td>
<td>6.86</td>
<td>29.8</td>
<td>28.6</td>
<td>7.40</td>
<td>7.44</td>
<td>+0.5</td>
<td>+3.0</td>
<td>0.55</td>
<td>0.41</td>
<td>15.8</td>
</tr>
<tr>
<td>M.R.</td>
<td>5.42</td>
<td>5.29</td>
<td>30.4</td>
<td>30.1</td>
<td>7.43</td>
<td>7.44</td>
<td>+3.5</td>
<td>+4.5</td>
<td>0.86</td>
<td>0.71</td>
<td>14.5</td>
</tr>
<tr>
<td>C.S.</td>
<td>6.97</td>
<td>6.59</td>
<td>33.7</td>
<td>33.8</td>
<td>7.45</td>
<td>7.49</td>
<td>+1.5</td>
<td>+2.5</td>
<td>1.05</td>
<td>0.80</td>
<td>14.9</td>
</tr>
<tr>
<td>Mean</td>
<td>7.23</td>
<td>7.44</td>
<td>31.8</td>
<td>31.9</td>
<td>7.40</td>
<td>7.46</td>
<td>-0.6</td>
<td>+1.5</td>
<td>1.58</td>
<td>0.95</td>
<td>16.2</td>
</tr>
<tr>
<td>SD</td>
<td>1.1</td>
<td>1.1</td>
<td>1.4</td>
<td>1.9</td>
<td>0.050</td>
<td>0.025</td>
<td>0.80</td>
<td>0.37</td>
<td>2.9</td>
<td>2.6</td>
<td>1.7</td>
</tr>
<tr>
<td>SE</td>
<td>0.36</td>
<td>0.35</td>
<td>0.45</td>
<td>0.61</td>
<td>0.016</td>
<td>0.008</td>
<td>0.25</td>
<td>0.12</td>
<td>0.82</td>
<td>0.82</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Ten healthy subjects:

| Mean | 14.6 | 33.3 | 7.39 | +2.9 | 1.12 | 14.6 | 3.48 | 26.1 | 26.7 | +0.6 | +1.4 | +0.7 | +1.8 | +1.5 | +1.3 | +1.2 | +0.8 | +1.0 | +1.5 | +1.0 | +1.2 | +0.8 | -0.9 | - |

SD: 0.70 0.63 0.026 (1.0-5.0)* 0.176 1.2 0.22 0.81 1.2

*Range.
†Antecubital vein blood.
hemoglobin in g/100 ml and Y = 2,3-DPG in μmoles/g Hb. Hence, 2,3-DPG in this group of subjects would be expected to average 21.5 μmoles/g Hb based on their blood hemoglobin concentration. Similarly, red cell ATP was not changed significantly over the period of dialysis (Table 1). Predialysis red cell ATP was 6.12 ± 0.54 μmoles/g Hb, and postdialysis red cell ATP was 6.30 ± 0.46 μmoles/g Hb, a cellular content considerably above that of healthy subjects (3.48 ± 0.68 μmoles/g Hb).

Hemoglobin’s affinity for oxygen as indicated by \(P_{50} \) was virtually unchanged after dialysis, as would be anticipated from the unchanged red cell 2,3-DPG content (Table 1). Moreover, red cell ATP, although elevated markedly, had no influence on \(P_{50} \). Indeed, \(P_{50} \) was slightly lower in dialysis patients (25.6 ± 0.31 torr) than in healthy subjects (26.4 ± 0.27) despite a higher concentration of red cell ATP in the former. The slope of the regression of \(P_{50} \) on 2,3-DPG was less in dialysis subjects \([P_{50} = 3.81 (2,3-DPG/Hb \text{ molar ratio}) + 21.8]\) than in healthy subjects \([P_{50} = 7.14 (2,3-DPG/Hb \text{ molar ratio}) + 19.5]\).

In order to show the sensitivity of our instruments in identifying increased or decreased hemoglobin–oxygen affinity, we measured blood from subjects who were known to have such deviations. During the studies on patients undergoing hemodialysis, four samples of neonatal blood obtained from the “milked” umbilical cord immediately after delivery and found to contain 60%–70% alkali-resistant hemoglobin had a \(P_{50} \) of 19.5, 23.0, 23.5, and 21.5 torr, whereas three subjects with homozygous hemoglobin S were found to have a blood \(P_{50} \) of 40.8, 31.5, and 31.0 torr. Moreover, nonuremic anemic patients who were being studied throughout this time had appropriate elevations in 2,3-DPG, and \(P_{50} \) was strongly correlated with the 2,3-DPG concentration \((r = 0.85)\) (data not shown).

Blood pH increased in nine of ten subjects following dialysis (Fig. 1). However, base excess also increased from a mean of −0.6 mmole/liter to +2 mmole/liter (data summed algebraically). Therefore, mean \(P_{50} \) (in vivo) was barely altered from 25.6 torr before to 24.7 torr after dialysis (Table 1). Moreover, blood hemoglobin was slightly increased after dialysis (7.44 ± 0.35 g/100 ml) as compared to the predialysis (7.25 ± 0.36 g/100 ml) concentration, further compensating for the slight decrease in \(P_{50} \) (in vivo), such that at constant arterial and mixed venous \(P_{O_2} \), the A-V oxygen difference would be reduced 5%. Two of the ten subjects, R.J. and D.M., had late dialysis symptoms of headache and/or nausea. These two subjects had a +0.2% and −4.0% change
in \(P_{50} \) (in vivo) with dialysis. D.M. had similar symptoms prior to onset of dialysis, making it difficult to associate them with the small changes in \(P_{50} \) (in vivo). Two other subjects with relatively large decreases in \(P_{50} \) (in vivo) were not symptomatic (e.g., J.W. and S.W.) (see Table 1).

Previous studies have indicated that red cell 2,3-DPG and ATP, primary determinants of oxygen binding by hemoglobin in vitro, were reduced when plasma inorganic phosphate was reduced,3,10,11 and hence a fall in red cell organic phosphates with dialysis was expected. However, the effect of plasma \(P_i \) on red cell glycolytic rate and organic phosphates is due to the direct dependence of red cell \(P_i \) concentration on extracellular \(P_i \). It is known that elevation of extracellular \(P_i \) results in an increase in red cell \(P_i \); however, penetration of the red cell membrane by inorganic phosphate is relatively slow.12 Reduction of \(P_i \) in the red cell may not occur during the period of hemodialysis when plasma \(P_i \) is gradually reduced from high toward normal levels. Therefore, we studied eight additional subjects to examine red cell \(P_i \) before and after dialysis. Again, red cell 2,3-DPG (14 \pm 1.1 \text{ \(\mu \)}moles/g Hb) and ATP (6.25 \pm 0.23 \text{ \(\mu \)}moles/g Hb) after 6 hr of hemodialysis were similar to predialysis values (2,3-DPG = 14.8 \pm 0.91; ATP = 6.05 \pm 0.28), and 2,3-DPG was again far below expected for the hemoglobin deficit. Predialysis red cell \(P_i \) was highly and linearly correlated with plasma \(P_i \), \((r = 0.95)\) (Fig. 1). The regression equation describing this relationship was \(Y = 0.28X + 0.01 \), where \(X \) is plasma \(P_i \) in \text{ \(\mu \)}moles/ml and \(Y \) is red cell \(P_i \) in \text{ \(\mu \)}moles/ml RBC. This confirmed the dependency of red cell \(P_i \) upon plasma \(P_i \) over a broad range of plasma \(P_i \), (0.7–3.0 \text{ \(\mu \)}moles/ml). Plasma \(P_i \) fell 43\% from 2.01 \pm 0.32 to 1.14 \pm 0.1 \text{ \(\mu \)}moles/ml after 6 hr of hemodialysis (Fig. 2). However, the marked reduction in plasma \(P_i \) did not result in a change in red cell \(P_i \), which was virtually un-
Fig. 4. (L) Association of red cell ATP and plasma P1. A high correlation was observed using curvilinear regression. Red cell ATP was associated with plasma P1 until a concentration of 2.25 μmoles was reached. Thereafter, red cell ATP did not increase with increasing plasma P1. (U) Association of red cell 2,3-DPG with plasma P1. No correlation was observed in this sample. Red cell 2,3-DPG is dependent on plasma P1 when markedly reduced concentrations (<0.32 μmoles/g hb) of the latter limit 2,3-DPG synthesis. In the presence of severe anemia, reduced plasma P1 results in reduced red cell ATP before 2,3-DPG falls.

changed after dialysis (0.57 ± 0.98 μmoles/ml) as compared to predialysis content (0.58 ± 0.093 μmoles/ml) (Fig. 2). Normal red cell P1 was 0.31 ± 0.04 (SD) μmoles/ml RBC at a plasma P1 of 1.05 μmoles/ml. Plasma and red cell H2O was measured in dialysis patients and P1 expressed as μmoles/ml H2O. Prior to dialysis the distribution ratio was 2.62 ± 0.17, whereas at the end of dialysis the ratio was 1.40 ± 0.09 (Fig. 3). In each case an inward gradient of P1, that is, a distribution ratio >1.0, was present at the termination of dialysis.

Red cell ATP was highly correlated (r = 0.81, p < 0.01) with plasma P1 (Fig. 4L). The relationship of red cell ATP with plasma P1 was curvilinear and reached a plateau at about 2.25 μmoles/ml plasma P1. Red cell 2,3-DPG was not correlated with plasma P1 in this sample of 18 chronic renal disease patients (Fig. 4U).

DISCUSSION

Previous studies have established the relationship of red cell glycolytic rate, 2,3-DPG, and adenosine triphosphate content with plasma P1 concentration. Lowered plasma P1 affects red cell glycolysis, 2,3-DPG, and ATP due to the dependence of red cell P1 on diffusion from plasma. Intracellular P1 is one of several modulators of red cell glycolytic rate. In addition, when severe limitation is placed on the intracellular P1 pool, accumulation of organic phosphate compounds becomes impaired. Hence, failure of red cell P1 to decrease during hemodialysis explains the inability of such an acute and transient reduction in plasma P1 to influence the organic phosphate content of the red cell. The lack of effect of plasma P1 on red cell P1 is explicable in large part by (a) the failure of the gradient for P1, expressed in terms of μmoles/kg of plasma and cell water to fall below 1.0 at the completion of dialysis in any subject, and (b) the extremely slow exodus of P1 from red cells even into a medium free of P1. Hence, even if a reversal of gradient occasionally occurred at the end of dialysis,
little change in red cell P_i would be expected (11) since after termination of
dialysis plasma P_i immediately begins its elevation to predialysis levels, excluding
a protracted effect of dialysis on red cell P_i.

Alkalosis during dialysis may increase hemoglobin’s affinity for oxygen; however, the effect was (1) quantitatively small, (2) balanced in large part by a concomitant increase in base excess, and (3) not observed to be associated with late dialysis symptoms. We cannot exclude the possibility that alkalosis may be one of several factors which interact to contribute to ill-feeling with dialysis, as has been suggested by others, although it is unlikely that its effect is mediated through altered hemoglobin oxygen affinity and impaired oxygen release. Alkalosis will also result in an acceleration of red cell glycolytic rate and 2,3-DPG synthesis, although this requires longer periods of time. The elevation in blood pH seen at the termination of dialysis gradually returns to pre-dialysis values. The pattern of change in blood pH with dialysis does not appear adequate to elevate red cell 2,3-DPG in dialysis subjects unless elevated pH is maintained. Sustained alkalosis between treatment periods requires adjuvant treatment with oral NaHCO$_3$.

Two previous studies have conflicted regarding the effect of hemodialysis on red cell 2,3-DPG content, and studies of oxygen binding by hemoglobin were not conducted. Our studies indicate that hemodialysis neither alters organic phosphates nor significantly impairs the ability of the red cell to participate in oxygen transport.

Of particular interest, although not central to this study, is the observation that red cell 2,3-DPG and P_50 in patients with severe chronic renal disease are less than expected for their hemoglobin deficit, confirming our previous findings in this regard in nondialysed subjects with severe azotemia. The abnormality is not corrected by hemodialysis as shown in the current report. Our findings in this regard are in contrast to those of Blumberg and co-workers and Mitchell and Pegrum, who have reported high 2,3-DPG content and P_50 in the cells of most hemodialysis patients. In a separate report we will show that the inability to develop alkalosis due to the large acid load is a central factor in the failure to raise red cell 2,3-DPG levels in response to the anemia of chronic renal disease. Red cell ATP rather than 2,3-DPG accumulates in the red cells of anemic subjects in an azotemic environment. Although the sum of red cell 2,3-DPG and ATP in anemic subjects with chronic renal disease is significantly greater than healthy nonazotemic subjects, ATP does not appear to contribute to the affinity of hemoglobin for oxygen in vivo.

ACKNOWLEDGMENT

The authors thank Janet R. Belding for her assistance in the preparation of this manuscript.

REFERENCES

3. Lichtman MA, Miller DR, Cohen J, Waterhouse C: Reduced red cell glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration and increased hemoglobin-
Hemoglobin Affinity for Oxygen in Chronic Renal Disease: The Effect of Hemodialysis

Marshall A. Lichtman, Marion S. Murphy, Barbara J. Byer and Richard B. Freeman