Hageman Trait (Factor XII Deficiency):
A Probable Second Genotype Inherited as an
Autosomal Dominant Characteristic

By Bruce Bennett, Oscar D. Ratnoff, James B. Holt, and Harold R. Roberts

A family is described in which Hageman trait appeared to be inherited in
an autosomal dominant manner in contrast to previously reported families
in which the disorder behaves as an autosomal recessive characteristic.

Immunologic studies suggested that the molecular defect was similar to
that of the autosomal recessive form and consisted of deficiency of anti-
gens related to Hageman factor.

HAGEMAN TRAIT is a hereditary disorder of blood coagulation in which
plasma is deficient in Hageman factor (Factor XII) as measured by func-
tional assays for its procoagulant, inflammatory, and fibrinolysis-enhancing
properties.1-4 Currently available evidence suggests that synthesis of Hage-
man factor is depressed in individuals with Hageman trait, because their
plasma is deficient in antigens detectable by antiserum directed specifically
against Hageman factor.5 In the cases thus far reported, Hageman trait appears
to be inherited in an autosomal recessive manner. Thus, both sexes are affected
with equal frequency; only about one-fourth of the siblings of probands have
the disorder; instances of Hageman trait within a family are limited to siblings;
and consanguinity between parents of affected individuals is relatively fre-
quently observed. Anomalously, Hageman trait was detected in three successive genera-
tions in one family, but this apparent exception to autosomal recessive inheri-
tance appeared to be explained by a high frequency of consanguinity.6 We
report here studies in a family in which Hageman trait seems to be inherited
as an autosomal dominant characteristic.

FAMILY STUDY

The family presented in both Cleveland and Chapel Hill. The Cleveland proband (III-10)
is a 6-yr-old boy who was found to have an abnormally long whole-blood clotting time
during routine investigation before a proposed tonsillectomy. He had no history of abnor-

From the Department of Medicine, Case Western Reserve University School of Medicine
and University Hospitals of Cleveland, and the Departments of Medicine and Pathology,
the School of Medicine, University of North Carolina, Durham, N.C.

Submitted April 10, 1972; accepted April 27, 1972.

Supported in part by Grants HE 01661 and HE 06350 from the National Heart and Lung
Institute, NIH, USPHS, and in part by grants from the American Heart Association.

Bruce Bennett, M.D.: Research Fellow, School of Medicine, Case Western Reserve
University, Cleveland, Ohio; supported in part by the Pink Family Foundation. Oscar D.
Ratnoff, M.D.: Career Investigator of the American Heart Association and Professor of
Medicine, Case Western Reserve University, Cleveland, Ohio. James B. Holt: Research
Assistant, Departments of Medicine and Pathology, School of Medicine, University of
North Carolina, Durham, N.C. Harold R. Roberts, M.D.: Professor of Medicine and
Pathology, School of Medicine, University of North Carolina, Durham, N.C.

Requests for reprints should be addressed to Dr. Oscar D. Ratnoff, University Hospitals
of Cleveland, Cleveland, Ohio 44106.
Fig. 1. Pedigree of the family studied. The numbers within the symbols indicate Hageman factor concentrations in units per milliliter in the subjects' plasma.
mal bleeding after circumcision, routine immunization, a minor head injury, and dentition. Coagulation studies demonstrated that the clotting time of whole blood was prolonged in glass tubes (75 min; normal, 17–31 min) but was normal in polystyrene tubes (185 min; normal, 75–235 min). The activated partial thromboplastin time was greater than 470 sec (control, 47 sec). Specific assays utilizing a modified partial thromboplastin technique demonstrated that the concentration of Hageman factor was less than 0.01 units/ml (normal average, 1.0 unit/ml), while that of plasma thromboplastin antecedent (PTA, factor XI) was normal.

The Chapel Hill proband (III-7) is a 13-yr-old boy whose clotting time was found to be prolonged prior to tonsillectomy. He gave no history whatsoever of unusual bleeding. A partial thromboplastin time (unactivated) was greater than 200 sec (control, 55.6), and a specific assay for Hageman factor revealed a level of less than 0.01 unit/ml (normal, 1 unit/ml). Factor VIII level was 2.04 units/ml (normal, 1 unit/ml). The patient underwent tonsillectomy without excessive hemorrhage.

Relatives of the patient were traced and tested in Cleveland and Chapel Hill (Fig. 1). The family originated in northeast Kentucky; members of the second and third generation live in Cleveland and Virginia. The family is unaware of a history of consanguinity. The only individual with a history of troublesome bleeding is the paternal grandmother of the propositus (I-4), who once bled severely after dental extraction, but she does not appear to have Hageman trait. In all, seven individuals were detected in whom plasma contained less than 0.01 units of Hageman factor per ml, while in four others the concentration of Hageman factor was 0.3, 0.25, 0.23, and 0.19 units/ml respectively.

The presence of antigens related to Hageman factor was sought by two methods. The plasmas of subjects II-10 and III-10, whom the concentration of functional Hageman factor was less than 0.01 units/ml, contained no antigens detectable by double diffusion in agarose gel against specific, absorbed rabbit antiserum. Precipitin lines were detected in the plasma of normal individuals and of subjects I-3, I-4, and II-11.

Specific antiserum inhibits the procoagulant activity of Hageman factor, while absorption of the antiserum with normal plasma blocks this inhibitory property. In contrast, the plasma of subjects II-10 and III-10, lacking detectable functional Hageman factor, did not block the inhibitory property of the antiserum. The plasma of subject I-3, whose plasma contained 0.30 units/ml of functional Hageman factor, blocked the antiserum to an intermediate degree. The results of these immunologic studies do not differ from those reported previously in Hageman trait.

DISCUSSION

In the family described, evidence of Hageman factor deficiency was detected in three generations and in both sexes, suggesting that the disorder was inherited as an autosomal dominant characteristic. Four of the 11 affected individuals had levels of Hageman factor between 0.19 and 0.30 units/ml. These values are similar to those found in 12 known heterozygotes of the usual autosomal recessive type of Hageman trait (i.e., parents of subjects with Hageman trait) in whom the range of values was from 0.14–0.79 units/ml, and other authors have reported similar findings. In the plasma of normal individuals the concentration of Hageman factor has been found to vary from 0.36–1.52 units/ml. The possibility, however, that this family has the usual autosomal recessive form of Hageman trait appears statistically remote because this would require that subjects I-4, II-8, II-11, who married into the family, should be heterozygotes also. These individuals were unrelated, came from different areas, and had levels of Hageman factor of 1.00 units/ml. The intermediate levels noted in four of the family members suggests, rather, an incomplete expression of the disorder. The immunologic studies reported indicate that this disorder cannot at present be differentiated at a molecular level from that of individuals with the usual autosomal recessive form of the disorder.

These studies suggest, then, that Hageman trait may be placed in the com-
Table 1. Antibody Blocking Activity of Plasma of Subjects in Family Studies Compared With That of a Subject With Established Hageman Trait and With Pooled Normal Plasma

<table>
<thead>
<tr>
<th>Rabbit Antiserum to Hageman Factor</th>
<th>Clotting Time in Final Hageman Factor Assays (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Subject III-10</td>
<td>173</td>
</tr>
<tr>
<td>- Subject II-10</td>
<td>154</td>
</tr>
<tr>
<td>- Subject I-3</td>
<td>120</td>
</tr>
<tr>
<td>- Established Hageman trait</td>
<td>146</td>
</tr>
<tr>
<td>- Pooled normal plasma</td>
<td>65</td>
</tr>
<tr>
<td>- PTA—deficient plasma</td>
<td>63</td>
</tr>
<tr>
<td>- Buffer</td>
<td>135</td>
</tr>
<tr>
<td>Normal Rabbit Serum</td>
<td></td>
</tr>
<tr>
<td>+ Subject number III-10</td>
<td>59</td>
</tr>
<tr>
<td>+ Pooled normal plasma</td>
<td>49</td>
</tr>
<tr>
<td>+ Buffer</td>
<td>48</td>
</tr>
</tbody>
</table>

Rabbit serum, diluted appropriately, was incubated with plasma samples detailed above (which had been adsorbed with calcium phosphate and heated at 56°C for 30 min to destroy or remove clotting-factor activity other than Hageman factor) for 30 min at 37°C and overnight at 4°C. The mixtures were centrifuged to remove any precipitated material and further heated for 30 min at 60°C to destroy any residual clotting activity. Equal volumes of diluted PTA-deficient plasma (adsorbed with aluminum hydroxide) as a source of Hageman factor were added to aliquots of the mixtures and incubated at room temperature for 45 min; Hageman factor assays were then performed by a coagulation method using known Hageman-factor-deficient plasma as substrate.

pany of deficiencies of antihemophilic factor (factor VIII) and fibrin-stabilizing factor (factor XIII), both of which may be inherited in more than one way.

REFERENCES

12. —: Unpublished observations.
Hageman Trait (Factor XII Deficiency): A Probable Second Genotype Inherited as an Autosomal Dominant Characteristic

Bruce Bennett, Oscar D. Ratnoff, James B. Holt and Harold R. Roberts