THE ACTIVE PRINCIPLE IN THE LEUKOCYTOSIS-PROMOTING FACTOR OF EXUDATES

By Valy Menkin, M.D.

The earlier studies of the writer have demonstrated that the leukocytosis accompanying many inflammatory processes is referable to the liberation at the site of inflammation of a factor closely associated with the pseudoglobulin fraction of exudates. The factor per se offers a reasonable explanation for the mechanism of leukocytosis with inflammation. This factor not only induces a discharge of immature leukocytes into the circulating blood, but it also is capable of producing a hyperplasia of granulocytes and of megakaryocytes in the bone marrow. The factor (abbreviated as the LPF) is active on human beings, thus suggesting possible clinical application. It has been found to be active on guinea pigs. This animal may well serve as a convenient assay animal. In as yet unpublished studies, it has been found that the LPF reinforces the leukocytosis caused by an already existing inflammation. This may be significant in the usage of the material in clinical cases with inflammatory processes. It is quite conceivable that the factor may be utilized as an adjunct to the antibiotics.

The leukocytosis-promoting factor has always been recovered in the form of a pseudoglobulin. Recent studies in association with Dr. G. Cooper and Mr. M. L. Dillon at Duke University suggest that the LPF seems to be distributed primarily between the a1 and a2 globulins of exudates. In the present communication evidence is furnished which suggests that the active group in the pseudoglobulin molecule of exudates is a relative simple polypeptide.

Experimental

The leukocytosis-promoting factor (LPF) utilized in the following observations has been obtained from pleural exudates in dogs previously injected with 1.5 cc. of turpentine as described in the past. The scheme of extraction can be briefly restated by referring to the diagram on p. 940.

The material when freshly obtained appears as a fluffy, white powder which is extremely soluble in an aqueous medium. It is active in dogs, inducing a discharge of immature white cells into the circulation.

After several months, a curious change occurs in the material. It seems to lose its solubility, becoming quite insoluble in physiologic saline, and at the same time the material loses its biologic activity. It now has either no or little activity in causing a rise in the number of circulating leukocytes. It seems as if a spontaneous...
denaturation has occurred. If the material is then centrifuged, the now insoluble
part of the precipitate may even induce a leukopenic effect in contrast to the
original leukocytosis-promoting property which it possessed. This, however, is
not consistently true. At times it has either no activity, or at most a weak activity.
On the other hand, if the supernatant phase of the insoluble aged LPF is injected

Exudate (usually alkaline exudates utilized)
\[(NH_4)_2SO_4 \text{ to } 1/3 \text{ saturation} \]
\[\text{precipitate} \]
\[\text{centrifuge} \]
\[\text{supernatant} \]
\[\text{dialyze until free of SO}_4^- \]
\[(NH_4)_2SO_4 \text{ to one-half saturation} \]
\[\text{On ice for one to several days} \]
\[\text{Siphon off decant supernatant} \]
\[\text{Centrifuge} \]

precipitate (as a rule, although not always, this fraction contains little LPF, but it may con-
tain some leukopenic property)

Unsettled parts of precipitate
\[\text{Dialyze until free of SO}_4^- \]
\[\text{Leukocytosis-promoting factor (LPF)} \]
\[\text{Lyophilized and left } \textit{in vacuo}\] under phosphoric anhydride

into the blood stream of a normal dog, considerable activity is obtained. The
supernatant fraction induces a rise in the number of circulating leukocytes. It ap-
pears as if aging of the LPF causes a spontaneous denaturation into a relatively in-
active and insoluble part. It splits off the active principle in the form of soluble
component. The data of several such experiments appear in table I. It is clear that
when 10 to 20 milligrams of aged LPF (3–6 months old) is treated with about 10
cc. of saline, stirred, and centrifuged, the supernatant part yields considerable
activity when injected into dogs. There is an increase of about 64 per cent in the
number of circulating leukocytes (table I). The evidence indicates that the active

* Determination on three samples of LPF have yielded a recovery on the average of 12.8 milligrams
of LPF per cc. of exudate.
principle is liberated in toto as a soluble component from the now insoluble and aged sample of leukocytosis-promoting factor. The course of one such experiment is shown in figure 1.

Table 1.—Effect of a Soluble Fraction Derived from Aged LPF (3-6 months old) on the Leukocyte Level

<table>
<thead>
<tr>
<th>Dog No.</th>
<th>Amount of original LPF from which soluble fraction derived (mg.)</th>
<th>Basal no. of white blood cells (cu.mm.)</th>
<th>Maximum no. of white blood cells within 3-6 hours following administration of material (cu.mm.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-T</td>
<td>10</td>
<td>18,850</td>
<td>30,125</td>
</tr>
<tr>
<td>3-T</td>
<td>14.5</td>
<td>19,000</td>
<td>46,125</td>
</tr>
<tr>
<td>5-T</td>
<td>13.5</td>
<td>11,000</td>
<td>27,175</td>
</tr>
<tr>
<td>6-T</td>
<td>14</td>
<td>16,975</td>
<td>24,050</td>
</tr>
<tr>
<td>6-T</td>
<td>11.5</td>
<td>19,000</td>
<td>22,125</td>
</tr>
<tr>
<td>8-T</td>
<td>17</td>
<td>16,950</td>
<td>27,300</td>
</tr>
<tr>
<td>9-T</td>
<td>10</td>
<td>16,700</td>
<td>20,100</td>
</tr>
<tr>
<td>10-T</td>
<td>10</td>
<td>16,000</td>
<td>25,700</td>
</tr>
<tr>
<td>11-T</td>
<td>20</td>
<td>9,800</td>
<td>16,850</td>
</tr>
</tbody>
</table>

Average: 16,097 cu.mm. average increase in leukocyte level = 16,425 cu.mm.

* Percentage increase in leukocyte level = 64.9\%.

Fig. 1. Effect of Supernatant Fraction from an Old Sample of LPF on the Leukocyte Level
Dog 9-T: Supernatant from 10 milligrams of 5 months old LPF employed.

In view of this observation, it became of interest to determine whether a proteolytic enzyme would inactivate the leukocytosis-promoting factor when freshly recovered as a soluble pseudoglobulin from exudates. The LPF was extracted from exudates of dogs, as described above. Various quantities of the factor in the fluid
state were treated with crystalline trypsin in amounts varying from a mere pinch of the enzyme to 2 milligrams. The length of incubation with the LPF was also variable, lasting from about one hour to over twelve hours. The treated LPF failed to be inactivated by tryptic digestion. The observations are assembled in table 2. It is quite clear that the addition of trypsin has failed to inactivate the factor. Following such digestion the injection of the treated material still caused a rise of 111.5 per cent in the number of circulating leukocytes (table 2). The course of an experiment is graphically shown in figure 2. Trypsin is known to hydrolyze complex proteins, and also the products of peptic digestion to the peptide stage.8

<table>
<thead>
<tr>
<th>Dog No.</th>
<th>Material injected</th>
<th>Basal no. of white blood cells</th>
<th>Maximum no. of white blood cells within 2-6 hours following injection of treated LPF with enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-T</td>
<td>13 cc. LPF + pinch crystalline trypsin</td>
<td>cu.mm. 12,100</td>
<td>cu.mm. 24,600</td>
</tr>
<tr>
<td>12-T</td>
<td>18 cc. LPF incubated overnight with trypsin</td>
<td>7,125</td>
<td>11,300</td>
</tr>
<tr>
<td>16-T</td>
<td>10 cc. LPF incubated with trypsin 2 hours</td>
<td>12,273</td>
<td>15,300</td>
</tr>
<tr>
<td>9-T</td>
<td>18 cc. LPF incubated with trypsin 2 hours</td>
<td>10,100</td>
<td>30,900</td>
</tr>
<tr>
<td>17-T</td>
<td>17 cc. LPF incubated 2 hours with 2 mgm. trypsin</td>
<td>6,300</td>
<td>8,950</td>
</tr>
<tr>
<td>10-T</td>
<td>10 cc. LPF incubated 1 hour and 5 minutes with 1 mgm. crystalline trypsin</td>
<td>10,900</td>
<td>14,100</td>
</tr>
<tr>
<td>9-T</td>
<td>10 cc. LPF incubated 1 hour and 25 minutes with approximately 1 mgm. crystalline trypsin</td>
<td>10,750</td>
<td>21,750</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>9,964</td>
<td>21,071*</td>
</tr>
</tbody>
</table>

* Percentage increase in leukocyte level = 111.5%.

On the basis of the foregoing evidence, it is conceivable that the leukocytosis-promoting factor is not a protein at all, and therefore it remains intact when subjected to the influence of a proteolytic enzyme.

Yet when the newly obtained and active leukocytosis-promoting factor is heated for 30–35 minutes at 100 C., the whole molecule appears to be denatured and the LPF is likewise inactivated. The results of these experiments are summarized in table 3. When the LPF is exposed to such temperature, the material is completely inactivated. The LPF now yields a rise of 6 per cent in the number of circulating leukocytes in contrast to its original activity of 104 per cent. (table 3). The course of such an experiment is illustrated in figure 3.

These observations simply indicate that the LPF is thermolabile, but neverthe-
less that it may be merely associated with the pseudoglobulin molecule without being an actual part of it.

Fig. 2. The Failure of Trypsin to Inactivate the LPF

Dog 20-T: 10 cc. of LPF + 1 milligram of trypsin incubated for 1 hour and 5 minutes before administering to the animal.

Table 3.—Effect of Heat (at 100 C. for 30–35 minutes) on the Activity of the Leukocytosis-Promoting Factor

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>Amount of LPF used</th>
<th>Basal white cell count in experiment with unheated LPF</th>
<th>Maximum white cell count 3-6 hours following administration of unheated LPF</th>
<th>Basal white count in experiment with heated LPF</th>
<th>Maximum white cell count 4-6 hours following administration of heated LPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>8,500</td>
<td>17,400</td>
<td>9,375</td>
<td>9,550</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>9,425</td>
<td>19,500</td>
<td>7,350</td>
<td>8,350</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>10,575</td>
<td>16,550</td>
<td>8,815</td>
<td>8,400</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>11,800</td>
<td>27,950</td>
<td>9,425</td>
<td>10,600</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>11,000</td>
<td>23,250</td>
<td>13,275</td>
<td>14,150</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>10,160</td>
<td>20,930</td>
<td>9,650</td>
<td>10,110</td>
</tr>
</tbody>
</table>

Percentage increase in leukocyte level with unheated LPF = 104\%.
Percentage increase in leukocyte level with heated LPF = 6\%.

Such an interpretation is, however, not consistent with subsequent facts. When now the active supernatant or soluble fraction obtained from aged LPF is evaporated to dryness on a steam bath, its activity remains essentially intact. Evapo-
ration of the active supernatant material even over a steam bath fails to inactivate the principle. These experiments are collected together in table 4. When such brittle, dried material obtained by evaporation over a steam bath is heated for 30-40 minutes at 100 C., the active principle fails to be inactivated (table 4). The active supernatant material when evaporated to dryness forms brittle flakes which are insoluble in an aqueous medium. Heating again to 100 C. such insoluble material fails to decrease its potency. Its injection in dogs induces a rise of 114.7 per cent in the level of circulating leukocytes. This observation definitely indicates that the LPF can be recovered from aged exudates as a highly thermostable substance. Experiments of this sort appear in figure 4. Such observations would preclude the interpretation that the leukocytosis-promoting factor is a thermolabile substance adsorbed to the pseudoglobulin molecule.*

* The insoluble brittle flakes obtained when evaporating the active supernatant to dryness on a steam bath are biuret and ninhydrin positive.
Table 4.—Effect of the Soluble Fraction Derived from Aged LPF When Evaporated to Dryness on Steam Bath and also When That Dried Fraction is Boiled for 30-40 Minutes

<table>
<thead>
<tr>
<th>Dog No.</th>
<th>Amount of dried supernatant material derived from aged LPF injected into heart</th>
<th>Basal white cell count</th>
<th>Maximum white cell count following administration of either evaporated material derived from aged LPF or following boiling of such evaporated dried material</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-T</td>
<td>mg.</td>
<td>cu.mm.</td>
<td>cu.mm.</td>
</tr>
<tr>
<td>11-T</td>
<td>7.625</td>
<td>11,050</td>
<td>17,500</td>
</tr>
<tr>
<td>16-T</td>
<td>9.350</td>
<td>12,950</td>
<td>18,400</td>
</tr>
<tr>
<td>29-T</td>
<td>11,350</td>
<td>18,400</td>
<td>27,500</td>
</tr>
<tr>
<td>Average</td>
<td>10,144</td>
<td>20,188*</td>
<td></td>
</tr>
<tr>
<td>9-T†</td>
<td>10</td>
<td>13,500</td>
<td>20,350</td>
</tr>
<tr>
<td>11-T†</td>
<td>13,575</td>
<td>21,100</td>
<td>22,850</td>
</tr>
<tr>
<td>39-T†</td>
<td>14,750</td>
<td>43,050</td>
<td>75,100</td>
</tr>
<tr>
<td>Average</td>
<td>13,475</td>
<td>28,500†</td>
<td></td>
</tr>
</tbody>
</table>

* Percentage increase in leukocyte level = 97.1‰.
† The evaporated material to dryness has in addition been subjected to boiling for 30-40 minutes.
‡ Percentage increase in leukocyte level = 114.7‰.

Fig. 4. The Activity of the Evaporated Supernatant Fraction of old LPF

Solid line indicates Dog 11-T: Suspension of supernatant fraction from old sample of LPF; evaporated to dryness and suspended as insoluble material. Broken line indicates Dog 11-T: the insoluble material was obtained by evaporating to dryness the supernatant fraction of an old sample of LPF. This was then heated for 30 minutes at 100°C. The procedure essentially failed to inactivate the material.
Polypeptides are known to be highly thermostable.\(^9\) For this reason the amino acid nitrogen before and after hydrolysis was determined on several samples of the active supernatant phase from an aged sample of LPF. These observations are as yet preliminary, but the measurements from such samples indicate in each case a rise in the amino acid nitrogen following acid hydrolysis. The actual figures obtained on such samples before and after hydrolysis are listed in table 5. These observations suggest very strongly that the active principle is a relatively simple polypeptide.

DISCUSSION

The foregoing observations are consistent with the interpretation that the active principle in exudates, which reasonably explains the mechanism of leukocytosis with inflammation, is a relatively simple polypeptide.* Besides the theoretic significance of this fact there is a possibility that the above observations may have practical application. The canine leukocytosis-promoting factor has been shown to be effective in human beings.\(^5\) The active factor has, however, been shown not to be too stable with time. A spontaneous denaturation occurs whereby the material loses its initial solubility. The present observations indicate that in spite of these changes the LPF is split off as a soluble and thermostable component. Its biologic activity remains undamaged. In this way it is conceivable that the leukocytosis-promoting factor of exudates can be preserved for long intervals in spite of age. These facts definitely suggest further practical use of this factor.

CONCLUSIONS

The leukocytosis-promoting factor of exudates appears to be a relatively simple polypeptide attached to the pseudoglobulin of exudates when extracted from the latter.

* The active principle is primarily nondiffusible from the active supernatant fraction of an aged sample of LPF. This would tend to indicate that the factor is somewhat larger than an amino acid.
This has been found by a study of samples of leukocytosis-promoting factor which have become insoluble by aging. Nevertheless, the active material has been found to be liberated as a water soluble component which is highly thermostable.

REFERENCES

1 Menkin, V.: Am. J. Path. 16: 13, 1940.
2 ———: Arch. Path. 38: 363, 1940.
4 ———: Am. J. Path. 15: 1021, 1943.
5 ———: Arch. Path. 47: 376, 1943.
7 ———: Arch. Path. 43: 566, 1947.
8 ———: Am. J. Path. 16: 193, 1945.
12 Folin, O.: J. Biol. Chem. 34: 577, 1912.
THE ACTIVE PRINCIPLE IN THE LEUKOCYTOSIS-PROMOTING FACTOR OF EXUDATES

VALY MENKIN

Updated information and services can be found at:
http://www.bloodjournal.org/content/3/8/939.citation.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml