Brief Report

B₁₂ Binding Protein Deficiency in Pernicious Anemia

By Christine Lawrence

Most of the vitamin B₁₂ in normal serum is bound to an alpha-i-globulin seromucoid.¹⁻⁵ When vitamin B₁₂ is added to normal serum in vitro, however, it is bound predominantly to beta globulin.⁶⁻⁹ In some patients with pernicious anemia, when B₁₂ is added to serum it is bound in less than normal amounts. It has been possible to attribute this to deficient binding by the beta globulin.

Case Report

Case 1 was a 29-year-old housewife whose father had pernicious anemia and whose great-grandfather had an illness suggestive of pernicious anemia. She experienced increasing fatigue and exertional dyspnea for 6 months before admission, and nausea and vomiting for 2 months. She had a 5-month episode of polyarthritis at age 14, diagnosed as rheumatoid arthritis. There had been no joint symptoms for 8 years before hospitalization. On examination she appeared pale, had 2 fingerbreadth splenomegaly, and normal joints. Her hemoglobin was 4.5 Gm./100 ml., packed cell volume 13 per cent, WBC 3100/cu. mm. and platelets 62,000/cu. mm. A smear of her marrow showed megaloblastic erythropoiesis, and she had histamine-fast achlorhydria. The latex fixation test was negative. Prothrombin time was 16 sec.; serum calcium 9.8 and inorganic phosphate 4.9 mg./100 ml.; albumin 4.7 Gm. and globulins 2.8 Gm./100 ml. Examination of the stool for fat was negative. The results of the first Schilling test were unexpectedly characteristic of a malabsorptive disorder in that she excreted only 1 per cent of the administered cobalt¹⁶⁻B₁₂ in her urine in 48 hours when the B₁₂ was given with intrinsic factor. Repetition of the second part of the Schilling test 3 weeks later showed only 3 per cent excretion of the 0.5 μg administered. After 13 monthly injections of 1 mg. B₁₂ there was no urinary excretion of cobalt⁶⁰-B₁₂ when given without intrinsic factor, but 11 per cent excretion when given with intrinsic factor. Thus, following treatment, the Schilling test result became characteristic of patients with pernicious anemia. Her hemoglobin and packed cell volume values became normal 5 weeks after the inception of parenteral B₁₂ therapy.

Methods

Cobalt⁶⁷B₁₂ (B₁₂*) was added to serum, and the amount which was bound to protein was estimated after adsorption of free B₁₂* with charcoal.¹⁰ Two and three-tenths ml. of a solution containing 4000 μg. of B₁₂* (specific activity 4 μc./μg.) in buffered saline (NaCl, 135 mM/L.; KCl, 5 mM/L.; NaHCO₃, 0.7 mM/L.; pH, 7.3) was added to 1.5 ml. of serum, giving a final concentration of 2867 μg./ml. serum. After incubation for 30 minutes at 37 C., 1 ml. was removed for measurement of total radioactivity, and 100 mg. of charcoal (Norite A) were mixed with the remaining solution. Unbound B₁₂* was adsorbed by the charcoal, which was then removed by centrifugation.
at 34,000 g for 20 minutes. The residual radioactivity in 1 ml of charcoal-free supernatant solution was determined at the same time as the total radioactivity of the untreated sample. The per cent retained per ml of serum was calculated from the formula
\[
\frac{\text{residual radioactivity}}{\text{total radioactivity}} \times 100
\]
Sixty μl. of each adsorbed supernatant solution were applied to each of 8 strips of Whatman 3MM filter paper and subjected to electrophoresis at pH 8.6 in barbital buffer (0.05 M) in a Beckman-Spinco cell. Serum proteins were stained with Buffalo blue-black on 2 strips, and homologous segments of the other 6 strips were pooled for determination of the distribution of B₁₂ among the serum protein fractions. The 6 strips were cut into 28 one-quarter inch segments from the beginning of the albumin zone through the gamma globulin fraction, and the homologous segments were counted together in a sodium iodide well counter.

Serum protein concentration was estimated by a biuret method. Electrophoresis of serum for determination of the protein fractions was performed at pH 8.6 in barbital buffer (0.075 M) on Whatman 1 paper in a Beckman-Spinco cell.

RESULTS

In 50 normal sera, an average of 39 per cent of the added 2667 μg./ml. of B₁₂ was retained after adsorption with charcoal. The binding of B₁₂ by the sera of 10 patients with untreated pernicious anemia varied from 10 to 54 per cent (Table 1). After electrophoretic separation of B₁₂-enriched normal sera, almost all of the B₁₂ was located in the beta globulin zone. The pattern in the right of Figure 1, though obtained in a specimen from a patient with treated pernicious anemia, was characteristic of the pattern in normal sera. In most pernicious anemia sera before treatment, there was also a small fraction bound in the alpha-1 globulin zone (left in Figs. 1 and 2).

The B₁₂ binding capacity of serum was estimated in these patients with pernicious anemia before and after 4 or more months of treatment with at least 1 mg. B₁₂ i.m. each month. The serum B₁₂ binding capacity increased after treatment in 6 of the 10 patients (Table 1, Cases 1-6). A change in the distribution of B₁₂ among the serum protein fractions accompanied this quantitative change (Figs. 1 and 2). Beta globulin binding of B₁₂ increased after treatment in all of the 6 patients whose total serum B₁₂ binding capacity rose. The pattern exhibited by the serum of case 1 (Fig. 2), showing virtually no binding of B₁₂ by beta globulin before treatment, thus far has been unique in our series.

Electrophoresis of paired serum specimens concurrently (Table 2) showed that the concentration of beta globulins was below normal in all the untreated patients, as previously noted by Neill and Weaver11 and van Dommelen et al.12 This abnormality reverted to normal after treatment with B₁₂.

DISCUSSION

There are at least two B₁₂-binding proteins (BP) in serum: a beta globulin and an alpha-1 globulin. The beta globulin binds almost all B₁₂ added to normal serum in vitro, presumably because the alpha-1 globulin is nearly saturated with endogenous B₁₂. In pernicious anemia serum, with its very low level of endogenous B₁₂, the alpha-1 globulin is capable of binding significant amounts of added B₁₂.
The present studies demonstrated that the binding of \(\text{B}_{12}\) by the beta globulin BP was abnormal in patients with pernicious anemia. The deficiency of binding by beta globulin was, in fact, greater than would appear from the values for total serum binding (Table 1), because binding by alpha-1 globulin accounted for a large proportion of the total in the pretreatment sera. Treatment with parenteral \(\text{B}_{12}\) was accompanied by a restoration of the beta globulin binding protein toward normal. Heller et al.\(^9\) had previously observed that \(\text{B}_{12}\)-deficient sera bound less total \(\text{B}_{12}\) than did normal serum. They reported, however, that the capacity of \(\text{B}_{12}\)-deficient serum to bind added \(\text{B}_{12}\) was normal. The present studies indicate that this is not always so.
Table 1.—Serum B₁₂ Binding Capacity in Patients with Pernicious Anemia

<table>
<thead>
<tr>
<th>PCV* %</th>
<th>Serum B₁₂ μg./ml.</th>
<th>% Added B₁₂ bound</th>
<th>μg./ml. B₁₂ bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Controls (50)</td>
<td>385 ± 109 (1 SD)</td>
<td>39 ± 12 (1 SD)</td>
<td>1041 ± 317 (1 SD)</td>
</tr>
</tbody>
</table>

Pernicious Anemia Patients

<table>
<thead>
<tr>
<th>Case No.</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>85</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

*PCV = packed cell volume.
†B = before treatment with B₁₂, and A = after treatment with B₁₂.
1Serum B₁₂ level was assayed microbiologically using L. leishmanni in only 20 of the 50 normal subjects.

Table 2.—Serum Protein Values in Gm./100 ml. in Patients with Pernicious Anemia before and after Treatment with B₁₂*

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Total Protein</th>
<th>Albumin</th>
<th>Alpha-1</th>
<th>Alpha-2</th>
<th>Beta</th>
<th>Gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>7.5</td>
<td>7.2</td>
<td>4.7</td>
<td>3.6</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>6.9</td>
<td>8.6</td>
<td>4.8</td>
<td>4.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>7.6</td>
<td>8.6</td>
<td>4.9</td>
<td>5.2</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>6.0</td>
<td>8.8</td>
<td>3.3</td>
<td>4.0</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>6.7</td>
<td>7.8</td>
<td>3.1</td>
<td>3.5</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>6.0</td>
<td>7.9</td>
<td>3.7</td>
<td>3.2</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>7</td>
<td>6.7</td>
<td>7.6</td>
<td>3.6</td>
<td>3.2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>8.4</td>
<td>8.9</td>
<td>5.3</td>
<td>4.7</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>9</td>
<td>6.4</td>
<td>7.0</td>
<td>4.1</td>
<td>3.3</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>6.4</td>
<td>7.0</td>
<td>4.4</td>
<td>3.4</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Mean for Cases 1–6: 6.8 8.2 4.1 3.8 0.3 0.5 0.5 1.0 0.6 1.1 1.3 1.7
Mean for Cases 7–10: 6.8 7.6 4.4 3.7 0.4 0.4 0.4 0.9 0.7 1.1 1.2 1.6
Mean for Cases 1–10: 6.9 7.9 4.2 3.8 0.3 0.5 0.5 0.9 0.6 1.1 1.3 1.6
Mean for 200 normal controls: 0.8 0.8 0.7 0.7 0.1 0.1 0.1 0.2 0.1 0.2 0.4 0.4
Mean for 200 normal controls: 7.0 3.8 0.4 0.8 0.9 1.1

*The values for statistical significance determined by applying the "t test" to concentrations before (B) and after (A) treatment in all patients with pernicious anemia are: total protein p < 0.01, albumin 0.4 > p > 0.2, alpha-1 globulin p < 0.001, alpha-2 globulin p < 0.001, beta globulin p < 0.001, gamma globulin p = 0.1.
The beta globulin has been shown by Hall and Finkler\cite{14} to have an important B₁₂ transport function in vivo. When they administered Co⁵⁷B₁₂ to normal subjects either orally or intravenously, the B₁₂ appeared to localize first in the beta globulin fraction of serum, and only some hours later in the alpha-1 globulin fraction.

Our case 1 exhibited two remarkable abnormalities. She had a “malabsorptive pattern” Schilling test when first examined and her serum beta globulin bound virtually no B₁₂. Her achlorhydria and family history suggested that she had pernicious anemia. There were no laboratory findings suggestive of a generalized malabsorptive disorder. Potency of this lot of intrinsic factor was assured by the characteristic Schilling test patterns it yielded in other patients with pernicious anemia. A malabsorptive pattern Schilling test in two patients with untreated pernicious anemia has also been reported by Haurani, Sherwood and Goldstein,\cite{15} who found that the pattern became characteristic of pernicious anemia after their patients received extended treatment with B₁₂. An intriguing possibility is that the sera of our Case 1 and their two patients were unable to bind B₁₂ and hence to transport it from its site of gastrointestinal absorption. With restoration of beta globulin B₁₂ binding capacity toward normal, this malabsorption of B₁₂ regressed.

The finding of decreased serum beta globulin concentrations in the untreated patients (Table 2) raises the possibility that this is the explanation for defective B₁₂ binding. However, the similarity of the levels in Cases 1–6 and 7–10 suggests that a more specific abnormality or deficiency is operative in the former group.

SUMMARY

When radioactive B₁₂ was added to normal serum, it was bound predominantly to beta globulin. Deficient binding was observed in the serum of five of ten patients with untreated pernicious anemia. Treatment of these patients with B₁₂ restored the beta globulin B₁₂ binding capacity toward normal.

In one of the five patients there was virtually no beta globulin binding of added B₁₂ before treatment. This patient exhibited a malabsorptive pattern Schilling test when first seen. Treatment with B₁₂ was attended by an increase of beta globulin binding capacity, and by return of the ability to absorb oral B₁₂ when given with intrinsic factor. It is possible that these two abnormalities are related in that the beta globulin may have an important role in the absorption and transport of B₁₂.

SUMMARIO IN INTERLINGUA

Quando radioactive vitamina B₁₂ esseva addite a sero normal, il esseva trovate que illo se ligava predominantemente a globulina beta. Defectivitate de iste processo ligatori esseva observate in le sero de 5 de 10 patientes con non-tractate anemia pernicioso. Le tractamento de iste patientes con vitamina B₁₂ restaurava le capacitate ligatori pro vitamina B₁₂ in globulina beta verso valores normal.
In un del 5 pacientes practicamente nulle ligation de vitamina B\textsubscript{12} per globulina beta ocorreva ante le tractamento. Iste paciente produceva un configuration de malabsorption in un test de Schilling al tempore de su prime examine. Le tractamento con vitamina B\textsubscript{12} esseva accompaniate de un augmentate capacitate ligatori del globulina beta e del retorno del capacitace de absorber oral vitamina B\textsubscript{12} quando isto esseva administrate insimul con factor intrinsec. Il pare possibile que iste duo anormalitates es interrelationate p(' I' facto que globulina beta ha tin rob importante in le absorption e le transporto de B\textsubscript{12}.

ACKNOWLEDGMENTS

Thanks are due the house officers of the Department of Medicine of the Bronx Municipal Hospital Center for their cooperation, to Mrs. S. Ceragolli for capable technical assistance, and to Dr. Frederick Klipstein of the Francis Delafield Hospital, New York, N. Y., for the microbiological assays of serum B\textsubscript{12}.

REFERENCES

7. Lawrence, C.: Submitted for publication.
Brief Report: B₁₂ Binding Protein Deficiency in Pernicious Anemia

CHRISTINE LAWRENCE

Updated information and services can be found at:
http://www.bloodjournal.org/content/27/3/389.full.html
Articles on similar topics can be found in the following Blood collections

Information about reproducing this article in parts or in its entirety may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#repub_requests

Information about ordering reprints may be found online at:
http://www.bloodjournal.org/site/misc/rights.xhtml#reprints

Information about subscriptions and ASH membership may be found online at:
http://www.bloodjournal.org/site/subscriptions/index.xhtml