AMERICAN SOCIETY OF HEMATOLOGY

295

Folic Acid Deficiency and Obstetrical Complications. Richard R. Streiff,*
Boston City Hospital, Boston, Mass.

Incorporation of Reduced Folate into Folate-Reductase. Nathan Grossowicz,
The Hebrew University Hadassah Medical School, Jerusalem, Israel

Antifolate Substance Obtained from Whole Blood and Serum by Ethylaminozellulose Chromatography. V. Michael Whitehead and Bernard A. Cooper,* Royal Victoria Hospital and McGill University Clinic, Montreal, Canada

Metabolic Interrelationships of Vitamin C, Vitamin B₁₂ and Iron. S. Benham Kahn,* Lewis A. Barness and Isadore Brodsky,* Hahnemann Medical College and Hospital, Philadelphia, Pa.

The Vitamin B₁₂ Binding Proteins of Normal and Chronic Myelogenous Leukemic Urine. Aaron Miller and John F. Sullivan, Veterans Administration Hospital, Boston, Mass.

Relationship Between the Form of Vitamin B₁₂ and Binding to Specific Plasma Proteins. Charles A. Hall* and Alexander E. Finkler, Veterans Administration Hospital, Albany, N. Y.

Assay of Intrinsic Factor Activity in Human Gastric Juice with Zirconyl-phosphate Gel (Z-Gel). O. Neal Miller, Hans J. Hansen, H. Gallo-Torres and Grace A. Goldsmith, Tulane University School of Medicine and Touro Research Institute, New Orleans, La.


Coexistence of Perinichous Anemia (PA) and Malabsorption of Vitamin B₁₂ in Three Patients. Eugene A. Brody,* Solomon Estren* and Victor Herbert,* The Mount Sinai Hospital, New York, N. Y.

Comparison of Intestinal Absorption of Large Doses of Hydroxocobalamin and Cyanocobalamin. Herbert Weisberg, Eugene Harbilas and George B. Jerzy Glass,* New York Medical College, Flower and Fifth Avenue Hospitals, New York, N. Y.

ERRATUM

On page 892 of the December 1965 issue of Blood (Vol. XXVI, No. 6), P. Lauf was unintentionally omitted as co-author of Abstract #52 presented at the Eighth Annual Meeting of the American Society of Hematology. The complete abstract is reprinted below.

Heterogeneity of Water-Soluble Protein Components of the Red Cell Membrane. M. D. Poulik and P. Lauf (Introduced by W. W. Zuelzer*), Child Research Center of Michigan, Detroit, Mich.

Separation and isolation of the structural components of the red cell stroma was undertaken. Hemoglobin-free stroma (1–3 per cent hemoglobin per dry weight) of the major blood groups was prepared and water-soluble protein was extracted with n-butanol-water at −2 C. The yield was increased by reductive cleavage of the stroma prior to extraction. A, B, M and N blood group activity was demonstrated by hemagglutination inhibition technic in the water-soluble material. The R₉ (D)-activity was destroyed by reductive cleavage or by butanol extraction alone. The water-soluble
material was subjected to chromatography on Sephadex G-200, and 2 well-defined peaks were separated. Ultraviolet spectra of the starting material and those obtained with the 2 peaks showed that a separation of a lipid-like material was affected. Peak A contained most of the protein and was immunologically active. This chromatographically homogeneous material of peak A was found to be heterogeneous by starch gel electrophoresis conducted in the presence of urea and mercaptoethanol. The effect of several lipid solvents on the electrophoretic patterns was also investigated. A highly negative-charged subcomponent was separated from all the major blood groups. Chemical and immunologic data will be discussed.