Homologous Bone Marrow Transplantation in Dogs Receiving X-Radiation plus Urethan or 6-Mercaptopurine

By LEONARD J. COLE AND EDWARD L. ALPEN
With the technical assistance of S. Maki and F. Lacina

THE DEMONSTRATION of the feasibility of homologous (i.e., genetically foreign) bone marrow transplantation as a life-saving procedure in lethally x-irradiated rodents\(^1\)\(^-\)\(^3\) has stimulated attempts to extend such observations to larger mammals such as dogs\(^4\)\(^-\)\(^5\) and monkeys,\(^6\) and also to man.\(^7\) In the case of dogs, in contrast to mice, it appears that exposure to doses several-fold larger than the LD\(_{50}\) does not suppress or abrogate the cellular systems involved in homograft rejection to the joint necessary for graft survival. This is indicated by the difficulty in obtaining successful homologous marrow transplants in this species.\(^4\)\(^-\)\(^5\)\(^,\)\(^8\) Thomas et al.\(^5\) have attempted to deal with this problem by splenectomizing the dogs 2 weeks before irradiation, giving high x-radiation doses (1200 r given in three daily exposures of 400 r each), and treating the irradiated recipients with ACTH. In more recent studies, Thomas et al.\(^9\) achieved some successful marrow homografts in dogs after exposure of the graft recipients to Co\(^\text{60}\) gamma radiation doses of 1200–1600 r at a dose rate of 4.2–4.4 r/min.

Our present experiments on homologous bone marrow transplantation in x-irradiated dogs were designed to test whether transplantation would be more readily attained when x-radiation was combined with antimetabolites known to depress the immune response. The two antimetabolites investigated were 6-mercaptopurine (6-MP), and urethan. Schwartz and Dameshek\(^1\)\(^0\) had first reported that 6-MP suppresses humoral antibody production in the rabbit; and that this compound could induce immunologic tolerance to purified protein antigens. Meeker et al.\(^1\)\(^1\) observed a definite prolongation of skin homograft survival in rabbits receiving 12 mg./Kg. of 6-MP daily for 14 days. Studies on mice in this laboratory\(^1\)\(^2\) have suggested that urethan in combination with x-radiation potentiates the inhibitory effect of x-radiation on the homograft reaction in mice, although urethan did not by itself prolong the survival of skin homografts. A much earlier study on the effect of urethan on anaphylactic reactions was reported by Farmer.\(^1\)\(^2\)\(^a\)

MATERIALS AND METHODS

The experimental animals reported on here were adult mongrel dogs, of both sexes, weighing 10–15 Kg. The dogs had all undergone a period of quarantine and observation,
during which time the standard procedures for immunization against canine hepatitis, distemper, and rabies were carried out. Approximately 1 week before irradiation the dogs was placed in individual laboratory cages, at which time control hematologic measurements were carried out.

Irradiation: The radiation source was a Westinghouse 250 KVP constant potential therapy unit, operated at 250 KVP, 15 ma, with filtration of 0.5 mm. Cu and 1 mm al, and HVL of 1.8 mm Cu. Each dog was anesthetized (Nembutal), and was mechanically rotated about its long axis during radiation exposure. The dose rate, measured in air at the potential midline, was approximately 15 r per minute, and the target-to-midline distance was 115 cm.

Bone marrow: The procedures for collection of the bone marrow from the donors and for infusion into the irradiated recipients were essentially the same as those described by Alpen and Baum in their experiments showing protection of lethally x-irradiated dogs with autologous marrow. Total nucleated cell count was determined on the pooled marrow suspension, and correction was made, on the basis of white cell counts on a peripheral blood sample, for the number of peripheral blood leukocytes in the suspension. The marrow cell suspension (5-10 x 10⁹ cells) was administered intravenously by rapid infusion into the external jugular vein, usually on the day following irradiation.

Treatment of the recipient animals: Several different experimental treatment schedules were used: the dogs received multiple injections of either 6-MP plus urethan, 6-MP alone, or urethan alone, given at various intervals during the week prior to x-irradiation. The drug dose (12.5 or 25 mg./Kg. 6-MP; 175 or 350 mg./Kg. urethan) and time relationships were varied somewhat from experiment to experiment, in the attempt to provide for optimal effectiveness and minimal toxicity. Fresh solutions of 6-MP were prepared by dissolving 500 mg. of the compound in 5 ml. of 0.1N NaOH, and then making appropriate dilutions with isotonic saline. Urethan was dissolved in isotonic saline. Both compounds were administered intravenously.

Food intake was a problem in the postirradiation period. In many cases it was found that the animals would eat canned chicken or fish rather than the usual horse meat and dog chow diet. Rations of these foods were given ad lib. when needed. Antibiotics (tetracycline and penicillin/streptomycin) were given routinely during the postirradiation period, either daily or on alternate days.

Hematology: Blood samples were taken two or three times weekly following marrow transfusion, and determinations were made of total nucleated cell count, granulocytes, mononuclear cells, and hematocrit. In the cases where female marrow donors and male recipients were employed, the percentage of neutrophils showing the female sex chromatin "drumstick" was also determined, as a marker for the presence of donor cells. The limitations in the use of this procedure as a marker for homologous marrow cell transplantation in lethally x-irradiated monkeys have been discussed by Crouch et al. Survival time and the hematologic picture were the major criteria employed for evaluating the effect of the marrow cell infusions. Complete autopsies and histopathologic studies were carried out on most of the animals.

RESULTS

The x-ray dose employed in most of these experiments was 900 r, a dose approximately three times the usual LD₃₀. It will be noted (table 1) that even at this supralethal radiation level, transfusion of fresh homologous bone marrow cells (5-10 x 10⁹ nucleated cells per recipient) had no apparent effect on survival time, as compared with control irradiated dogs which received no marrow injection. There was, further, no demonstrable marrow "take" under these conditions, as shown either by an increase in leukocyte counts (fig. 1) or by the presence of polymorphonuclear leukocytes bearing female "drumstick" chromatin, in those cases where marrow from female donors was trans-
HOMOLOGOUS BONE MARROW TRANSPLANTATION

Table 1.—Marrow Transplantation in Lethally X-Irradiated Dogs: Effect of Homologous Bone Marrow in Dogs Given Prior Treatment with Urethan or 6-Mercaptopurine

<table>
<thead>
<tr>
<th>Group</th>
<th>X-Ray Dose</th>
<th>No. of Dogs</th>
<th>Treatment</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>900 r</td>
<td>4</td>
<td>none</td>
<td>0 - -</td>
</tr>
<tr>
<td>II</td>
<td>900 r</td>
<td>4</td>
<td>homologous marrow</td>
<td>0 - -</td>
</tr>
<tr>
<td>III</td>
<td>900 r</td>
<td>13</td>
<td>6-MP or urethan plus homologous marrow</td>
<td>8 2 1</td>
</tr>
<tr>
<td>IV</td>
<td>900 r</td>
<td>3</td>
<td>autologous marrow</td>
<td>3 3 3</td>
</tr>
</tbody>
</table>

*One of these dogs whelped a litter of five healthy pups 9 months after irradiation.

Transplantation of homologous marrow following treatment with chemicals and x-radiation: A total of 13 dogs treated with the antimetabolite chemicals and 900 r of x-radiation prior to homologous marrow infusion are listed in

Fig. 1.—Nucleated cell and hematocrit response in peripheral blood of a dog after 900 r of x-rays.
<table>
<thead>
<tr>
<th>Dog</th>
<th>Sex</th>
<th>Chemicals (days injected preirradiation)</th>
<th>No. Marrow Cells (x 10<sup>6</sup>)</th>
<th>Donor Sex</th>
<th>Survival T' me (days)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>M</td>
<td>6-MP (7, 6, 5)</td>
<td>20*</td>
<td>—</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>F</td>
<td>6-MP + urethan (7, 6, 5, 3)</td>
<td>11.3*</td>
<td>—</td>
<td>23</td>
<td>icterus, conjunctivitis</td>
</tr>
<tr>
<td>48</td>
<td>M</td>
<td>6-MP + urethan (6, 5, 4, 3)</td>
<td>11.3†</td>
<td>M</td>
<td>13</td>
<td>+ markers</td>
</tr>
<tr>
<td>56</td>
<td>M</td>
<td>6-MP + urethan (6, 5, 4)</td>
<td>7.6†</td>
<td>M</td>
<td>16</td>
<td>+ markers; edema, congestion and hemorrhage of lungs</td>
</tr>
<tr>
<td>57</td>
<td>M</td>
<td>6-MP + urethan (7, 6, 5, 4)</td>
<td>11.3†</td>
<td>F</td>
<td>63</td>
<td>+ markers; secondary disease</td>
</tr>
<tr>
<td>60</td>
<td>M</td>
<td>urethan (6, 5, 4)</td>
<td>7.8†</td>
<td>M</td>
<td>21</td>
<td>no markers found; icterus; hematocrit 18 at death; pneumonia</td>
</tr>
<tr>
<td>62</td>
<td>M</td>
<td>6-MP (6, 5, 2, 1)</td>
<td>11†</td>
<td>F</td>
<td>31</td>
<td>+ markers at 14 days, none at 21 days; icterus; intestinal mucosal necrosis</td>
</tr>
<tr>
<td>63</td>
<td>M</td>
<td>6-MP (7, 6, 5, 2)</td>
<td>10.3†</td>
<td>F</td>
<td>29</td>
<td>+ markers; hematocrit 26 at death; pneumonia; hemorrhagic lungs</td>
</tr>
<tr>
<td>80</td>
<td>M</td>
<td>urethan (3, 2, 1)</td>
<td>10†</td>
<td>F</td>
<td>17</td>
<td>+ markers; precipitous drop in granulocytes (100 cells /cu.mm.) at day 13</td>
</tr>
<tr>
<td>81</td>
<td>M</td>
<td>urethan (3, 2, 1)</td>
<td>9†</td>
<td>F</td>
<td>18</td>
<td>+ markers; lung edema; hypocellular marrow at death; corticosteroids given on days 13, 14, 15</td>
</tr>
<tr>
<td>84</td>
<td>M</td>
<td>urethan (11, 7, 6, 4)</td>
<td>15†</td>
<td>F</td>
<td>22</td>
<td>markers not determined; pneumonia, marrow hypoplasia</td>
</tr>
<tr>
<td>93</td>
<td>M</td>
<td>urethan (3, 2, 1)</td>
<td>12†</td>
<td>F</td>
<td>15</td>
<td>+ markers; bloody urine</td>
</tr>
<tr>
<td>99</td>
<td>M</td>
<td>urethan (3, 2, 1)</td>
<td>8.5†</td>
<td>F</td>
<td>22</td>
<td>+ markers; beagle donor and recipient; antibiotics not given from days 12-20</td>
</tr>
</tbody>
</table>

*Five different marrow donors employed.
†Two different marrow donors employed.

Table 2. It is evident from the data that the injection of homologous marrow cells under these conditions prolonged the survival of these dogs beyond the 8–11 day survival usually seen at this dose. The longest survival time observed in this series was 63 days. Objective evidence for the successful “take” of the donor marrow cells is seen in the cases where female “marker” polymorphonuclear leukocytes persisted over periods of 2 weeks or more (in one dog for 63 days) in the male recipients. In addition, definite increase in the peripheral granulocyte count from the usual low values was already in evidence by 8 days after irradiation in essentially every dog listed. This is particularly meaningful in the six cases which received a single injection of marrow 1 day postirradiation. Dog No. 21 received marrow taken from five different donors, and was injected (3–4 x 10⁶ cells per injection) on days 0, 2, 4, 6, 9, after irradiation; similarly, dog No. 45 received marrow (1–5.3 x 10⁶ cells per injection) on days 0, 1, 3, 4 and 7. In these two instances, therefore; peripheral blood counts during the first postirradiation week are not necessarily reliable indicators of hematopoietic recovery.
The time-course of the hematologic picture in individual animals is given in figures 2, 3, 4 and 5. In all cases shown, there was a precipitous rise in granulocyte count occurring around 8 days postirradiation, and attaining values in the normal range by 15 days. In some cases (fig. 3) a subsequent decline in granulocyte count occurred, leading to death of the animal. In other instances, on the contrary, the granulocyte count remained high over a period of 3 to 4 weeks, with the animal succumbing nevertheless. In several animals marked leukocytosis occurred, with peripheral white counts approaching 100,000/cu. mm.

In all dogs but one (No. 57), successful transplantation of homologous bone marrow was not accompanied by a significant or sustained recovery in the mononuclear cell count in peripheral blood (see figure 2).
COLE AND ALPEN

Fig. 3.—Attempt at prevention of secondary disease by treatment of irradiated dog bearing homologous marrow graft, by means of corticosteroids and irradiated blood.

rapid recovery of mononuclear cell count is observed following autologous marrow transfusion after 900 r of x-radiation (fig. 6) suggests that the lack of recovery in the former case is related to the antigenic differences between marrow donor and host.

Secondary disease in irradiated dogs bearing homologous marrow transplants: Clinical signs and symptoms reminiscent of secondary disease in mice were observed in several of the dogs which died later than 3 weeks postirradiation. This is perhaps best described and illustrated in the case of dog No. 57. This male mongrel dog received injections of urethan and 6-MP prior to irradiation as follows: on days 7 and 6, 175 mg./Kg. and 12.5 mg./Kg., respectively; on days 5 and 4, 350 mg./Kg. and 25 mg./Kg., respectively. X-radiation (900 r) was given at a dose rate of 15.4 r per minute, and 11.3 x 10⁶ bone marrow cells from a healthy female mongrel dog were injected on the next day. The time-course of the hematologic response is presented in figure 4. Following the initial drop in granulocyte level to 400/cu. mm. at 6 days postirradiation, there was excellent recovery in granulocytes by 8 days (3000 cells per cu. mm.), attaining preirradiation levels by day 11. That this hematologic recovery was the consequence of a “take” of the donor marrow was indicated by the presence of female “drumstick” chromatin in 7 per cent of the granulocytes in the blood sampled at 9 days. By comparison, 8 per cent of the granulocytes in the blood of the marrow donor exhibited female chromatin.

The mononuclear cell level in this dog reached a minimum (less than 100
Fig. 4.—Hematologic and body weight response in a male dog surviving for 63 days after homologous bone marrow transplantation following x-irradiation (900 r) plus urethan and 6-MP.

cells per cu. mm.) at 3 days postirradiation, and then rose steadily to attain a level of 1000 cells by 9 days, a level maintained until the middle of the second week; the mononuclear cell count then increased again, reaching a maximum of 9000 cells per cu. mm. at 25 days. Hematocrit values were relatively steady during this period (about 45); and the blood plasma was water-clear until day 21, when it became distinctly icteric. The urine was bloody, the stools quite watery, the eyes were filled with purulent fluid at this time, and the dog refused to eat. By day 25, the hematocrit level was 32, and the total nucleated cell count in the peripheral blood had reached approximately 50,000 cells per cu. mm. Severe weight loss was evident (6.5 Kg. vs. 10.8 Kg. initially). These evident signs of acute infection were treated by intramuscular injections of penicillin and tetracycline and by bacitracin inunction in the eyes. A transfusion of 200 ml. fresh blood (from which the buffy coat leukocytes had been removed (cf. 14) derived from the marrow donor was given on day 25. The infection was apparently brought under control, as indicated by the dog's clinical status, and by the gradual return of the granulocytes to normal levels by the fifth week postirradiation. Female "drumstick" chromatin was observed in 7 per cent of the peripheral blood granulocytes at this time, and in 5 per cent of the granulocytes at 57 days postirradiation. At 62 days the dog exhibited muscular weakness, was unable to walk, and refused to take food. Female "marker" chromatin was present in 3 per cent of the granulocytes at this time, the granulocyte count was in the normal range (20,000 cells per cu. mm.), while the mononuclear cell level was only 1000 per cu. mm. This
Fig. 5.—Transplantation of bone marrow from a female dog to a male dog following x-irradiation (900 r) plus urethan and 6-MP and injections of marrow on days 1 and 3.

The animal expired 63 days after irradiation. There was no clinical evidence of distemper.

Evidence that this dog had succumbed to a secondary disease syndrome, quite analogous to that seen in rodents, comes from the histopathologic findings:

The marrow was moderately cellular, with blast cells of all cell lines, including plasma cells, seen. Areas of nuclear pyknosis and karyolysis were observed. The lymph nodes consisted of reticuloendothelial networks with no appreciable follicle activity, and with no definite organization of germinal centers. Fragmented cells and pyknotic nuclei were common within the follicles. The medullary sinuses contained large mononuclear cells, some with iron pigment. The spleen parenchyma was extremely condensed. No active follicle structures could be recognized; some tiny erythroid nests, but no myeloid activity, could be seen. The red pulp sinusoidal cells all contained large quantities of engulfed iron pigment. The liver showed diffuse intensive, periportal fibrosis around some central veins. The liver cell cords were in disarray, and consisted of broken clumps and islands of liver cells separated by irregularly anastomosing sinusoids. A few small islets of active necrosis were seen. Kupffer cells were filled with iron pigment and were quite prominent. The sinusoïds and the proliferating triadal connective tissue were infiltrated with plasma cells and mononuclear cells. There was massive atrophy of ear skin, with loss of appendages. In some places the germinal layer was only one cell thick. The vascular bed was intact, and no proliferative endarteritis was seen. The tubules, glomeruli and vessels of the kidney appeared normal. There was a generous infiltrate of plasma-cell-type cells in the interstitial tissue of the medulla. The vascular bed of the lung was congested and the alveoli were filled with precipitated proteinaceous material. Nests of plasma cells
and mononuclear cells were scattered through the interstitial tissue and in the subpleural lymphatics. Foci of pneumonia were not seen. Apart from absence of lymphatic patches, no lesions in the small intestine were identified. Marked edema of the lamina propria and submucosa of the colon was noted. A delicate sprinkling of plasma cells in the pia-arachnoid, and moderate cerebral edema were seen.

DISCUSSION

The foregoing results evoke two major points for discussion: 1) the question of the “take” of homologous donor marrow cells in the irradiated dog; 2) the secondary disease syndrome in irradiated dogs bearing marrow homografts.

It is evident under the conditions of these experiments, and with the radiation dose rate employed (15 r/min.), that an x-ray dose as high as 900 r (which is three times the LD50 in dogs) did not depress the homograft response of the hosts sufficiently to allow successful transplantation of homologous marrow grafts. This conforms with the experience of Thomas et al. who state that grafts of homologous marrow in irradiated dogs are rarely accepted below doses of 1200 r. These workers did observe good “takes” of such grafts in dogs after exposure to gamma radiation doses in the range of 1200–1600 r, given at a dose rate of 4.2–4.4 r/min. Therefore, successful marrow homotransplantation in the recipient dogs, which received 6-MP or urethan plus 900 rad of x-radiation, in the present study show the additive effect of these chemicals and x-radiation in suppressing the homograft reaction.

Secondary disease: In an analogous study on lethally x-irradiated monkeys (650 r or higher), Crouch et al. noted an increased average survival time in
the monkeys treated with homologous marrow, but none survived beyond 31
days. A secondary disease syndrome consisting of anorexia, diarrhea, wasting,
often occurring together with jaundice or dermatitis, was observed in these
animals; this syndrome did not occur in irradiated monkeys treated with auto-
logous marrow. Thus, the secondary disease syndrome in monkeys and dogs
is not a consequence of the high dose of radiation per se, but rather results
from the introduction of genetically foreign viable bone marrow cells into
such irradiated animals. The histopathologic description of secondary disease
in the present study is quite similar to that presented by De Vries et al.15
for monkeys. In both situations the animals succumb with the donor hemat-
opoietic elements still active at the time of death. By contrast, the extensive
and severe lymphoid tissue aplasia observed in the dogs and in the monkeys
are precisely analogous with what occurs in secondary disease in mice. This
is probably best attributed in our present state of knowledge to a graft-
versus-host reaction, initiated by immunologically competent cells in the in-
oculated marrow (cf. 16).

The consequences of such lymphoid aplasia, with respect to increased
susceptibility of radiation chimeras to various infectious processes and agents,
have been discussed by several authors. However, it is still an open question as
to whether infection is the prime (or only) cause of death in the secondary
disease syndrome. Is it possible, for example, to invoke pathologic effects of
the graft-versus-host reaction on tissues (other than lymphoid) which might
contribute to the demise of the animal? De Vries et al.15 observed lesions in
the liver, intestinal tract epithelium, and skin in their monkeys bearing homo-
logous marrow grafts; skin and liver lesions were observed in the present
study. The pronounced fall in hematocrit accompanied by a marked icterus, as
seen in dog No. 57 during the 4th week postirradiation and marrow trans-
plantation, may also be a reflection of a graft-versus-host reaction. It is of
interest that this effect was observed concomitantly with high levels of mono-
nuclear cells in the peripheral blood.

Previous studies from the laboratory17 have suggested that the pathologic
manifestations of secondary disease in mice may be explicable in terms of
antimitotic effects of the graft-versus-host reaction in tissues of the host. Such
effects have been observed in skin wound healing,18 kidney mitosis following
unilateral nephrectomy,17 intestinal epithelium,19 and bone marrow.20 The
investigation of such reactions in the secondary disease syndrome in large
mammals is of evident interest. From a more practical standpoint, however,
the major problem facing us is that of prevention or amelioration of the
secondary disease syndrome, following homologous marrow transplantation
in large mammals. Recent studies on mice21 have suggested some new ap-
proaches to this problem, specifically the use of suitable preirradiation of the
marrow donor, and the administration of isoantiserum (anti-donor) at ap-
propriate times after marrow transplantation. It is our intent to apply such
procedures in our studies on homologous marrow transplantation in the dog,
and also to investigate the effect of these antimetabolites, when given after
marrow transplantation, on the development and course of secondary disease.
HOMOLOGOUS BONE MARROW TRANSPLANTATION

SUMMARY

Mongrel dogs were treated with 6-mercaptopurine (6-MP) or urethan prior to x-irradiation (900 r, delivered at a dose rate of 15 r/min.). The marrow dose was 7–11 x 10⁶ cells, given on the day following irradiation; urethan (175 or 350 mg./Kg.) and 6-MP (12.5 or 25 mg./Kg.) were administered at three or four daily intervals during the week prior to irradiation. Mean survival time (MST) in this group of 13 dogs was 23 days, with a maximum of 63 days. MST in a group of dogs given homologous marrow after 900 r, but not treated with the chemicals, was 10 days. The treated animals characteristically showed good recovery of peripheral blood granulocyte count by 8–10 days, together with objective evidence of marrow “take”; recovery of mononuclear cell count was not observed, except in the single case which survived for 63 days. None of the control animals showed any rise in the peripheral blood count after initial depression, and all died with marrow aplasia. Secondary disease in treated dogs was characterized by anorexia, weight loss, infection, and lymphoid tissue aplasia in all the animals; skin atrophy, liver lesions, jaundice and anemia were seen in some of the animals. The marrow showed active hematopoiesis and moderate to good cellularity in most of the treated animals, although megakaryocyte activity was deficient in some. Pneumonia and pulmonary edema were found in many of the dogs at autopsy. It is evident that the use of these antimetabolites permits the successful transplantation of homologous marrow in dogs at a dose of x-radiation (900 r) which, by itself, is insufficient. These compounds (urethan and 6-mercaptopurine) are, therefore, additive to x-radiation with respect to suppressing the homograft reaction in dogs, as well as in rodents.

SUMMARIO IN INTERLINGUA

Canes hybrida esseva tractate con 6-mercaptopurina (6-MP) o urethano ante roentgeno-irradiation de 900 r, administrate in un dosage de 15 r per minuta. Un dose de 7 a 11 x 10⁶ cellulas de medulla esseva administrate le die post le irradiation. Urethano, in un dosage de 175 o 350 mg per kg de peso corporee, e 6-MP, in un dosage de 12,5 o 25 mg per kg de peso corporee, esseva administrate a intervallos de tres o quatro dies in le curso del septimana ante le irradiation. Le tempore medie de superviventia in iste gruppo de 13 canes esseva 23 dies, con un maximo de 63 dies. Le tempore medie de superviventia in un grupo de canes tractate con medulla homologe post le irradiation sed non pretractate con le pharmacos esseva 10 dies. Le tractate animales, characteristicamente, monstrava bon restablimento del numeration de granulocytos in le sanguine peripheric al fin de 8 a 10 dies, insimul con objective evidentia de acceptation de medulla. Restablimento del numeration de cellulas mononucleari non esseva observate, excepte in un sol caso in qu le can habeva un superviventia de 63 dies. Nulle del animales de controlo manifestava ulle augmento in le numeration del sanguine peripheric post le depression initial, e omnes moriva in aplasia medullari. Le morbidity se- condari in le tractate canes esseva characterisate per anorexia, perdita de peso, infection, e aplasia de tissu lymphoide in omne le subjectos. Atrophia
cutanee, lesiones hepatic, jalnessa, e anemia esseva notate in certes del animales. Le medulla exhibiva un active hematopoiese e moderate o bon cellularitate in le majoritate del tractate animales, ben que le activitate megacaryocytic esseva defective in plures. Pneumonia e edema pulmonari esseva trovate in multes del canes al necropsia. Ii es apparente que le uso del mentionate antimetabolitos permitte le successose transplantation de medulla ossee in canes post un dose de 900 r de roentgeno-irradiation le qual, per se sol, non sufficerea a render le transplantation acceptabile. Ergo, le compositos urethano e 6-MP ha effectos additive a illos de roentgeno-irradiation in le suppression del reaction a homograffage in canes si ben como in rodentes.

ACKNOWLEDGMENTS

The authors wish to thank LCDR R. M. Garver for collaboration during the early phases of this work, Dr. V. J. Rosen, Jr., for the histopathologic data, and Miss Patricia Roan and the staff of the Pathology Laboratory for histologic processing of the tissue sections.

REFERENCES

Edward L. Alpen, Ph.D., Head, Biological and Medical Sciences Division, U. S. Naval Radiological Defense Laboratory, San Francisco, Calif.
Homologous Bone Marrow Transplantation in Dogs Receiving X-Radiation plus Urethan or 6-Mercaptopurine

LEONARD J. COLE, EDWARD L. ALPEN, S. Maki and F. Lacina